a2 United States Patent

US006990566B2

10y Patent No.: US 6,990,566 B2

Mirsky et al. @5) Date of Patent: *Jan. 24, 2006
(549) MULTI-CHANNEL BI-DIRECTIONAL BUS 4,754,412 A 6/1988 Deering ...coceeververenee 708/521
NETWORK WITH DIRECTION SIDEBAND 4,858,113 A 8/1989 Saccardi 710/317
BIT FOR MULTIPLE CONTEXT 4,870,302 A 9/1989 Free.man 326/41
PROCESSING ELEMENTS 5,020,059 A 5/1991 Gorin et al.oueeeeeeeeeen. 714/3
5,233,539 A 8/1993 Agrawal et al. 716/16
(75) Inventors: Ethan Mirsky, Mountain View, CA 2’;(1);’338 2 ;‘qggj gOOk . ktl """" ;;é/gg
US); Robert French, Sunnyvale, CA Doy / ArvENEX EL Ak e /
(US); , dSunnyvale, 5336950 A 81994 Popliet al. w.oveeereennnne. 326/39
. P
Eggg Ian Eslick, Mountain View, CA 5426378 A 6/1995 ONZ wovorveerorerereerrreeen, 326/39
5457408 A 10/1995 Leung ... 326/38
5469,003 A 11/1995 Kean 326/39
(73) Assignee: Broadcom Corporation, Irvine, CA 5,581,199 A 12/1996 Pierce et al.ccoccvven. 326/41
(US) 5,684,980 A 11/1997 Casselmanc..c... 703/23
5,689,661 A * 11/1997 Hayashi et al. 710/316
(*) Notice: Subject to any disclaimer, the term of this 5,742,180 A 4/1998 DeHon et al. 326/40
patent is extended or adjusted under 35 272227%2 2 Z }ggg yi:‘amed """ ;ﬂggz
,765, (5773 OO
US.C. 154(b) by O days. 5778439 A 7/1998 Trimberger et al. 711/153
This patent is subject to a terminal dis- 5,790,880 A * 8/1998 Iretoncccceceeeeeeen. 712/23
claimer. :
(Continued)
(21) Appl. No.: 10/828,039 OTHER PUBLICATIONS
(22) Filed: Apr. 20, 2004 \./alero-Ga.rcia, et a.l.; “Implementatioq of Systolic Algo-
rithms Using Pipelined Functional Units”; IEEE Proceed-
(65) Prior Publication Data ings on the International Conf. on Application Specific
US 20040236815 Al Nov. 25. 2004 Array Processors; Sep. 5-7, 1990; pp. 272-283.
ov. 25,
(Continued)
Related U.S. Application Data P E] X -
. L rimary Examiner—Kenneth S. Kim
(63) Jccingguaf;%g of appll)lctathon 1\6107.405% 31674’838’ filed on (74) Attorney, Agent, or Firm—Christie, Parker & Hale,
ul. , , 1OwW Fal. INo. 0, 5 . LLP
D Int. CI. 57) ABSTRACT
GOGF 15/17 (2006.01)
(52) US.ClL oo 712/11; 712/16; 712/33; . .
710/31 A method and an apparatus for configuration of multiple
(58) Field of Classification Search 32638, Comext fﬁﬁcfﬁsiﬁiafﬁiegi a@gﬁfg?sgjc Siifyﬂﬁsiie
712/11, 15, 33 . T . -
S lication file f let h history. ting data over a bidirectional shared bus network including
c¢ apprcation e for complete Seareh usiony a plurality of channels between pairs of MCPEs in the
(56) References Cited networked array. The method and an apparatus then selec-

ClibPD

4,597,041 A
4,748,585 A

U.S. PATENT DOCUMENTS

DATA O
DATA 1
DATA 2
DATA 3

2,
1304ﬁ

6/1986 Guyer et al. 712/248
5/1988 Chiarulli et al. 712/15

tively transmits a sideband bit indicating a direction in
which the data is transmitted in the shared bus network.

20 Claims, 20 Drawing Sheets

LEVEL
3 BUS

1326 1320

DCOWNSTREAM

REGEN
DRWVE LOGC 1+ <1 neBanD BIT

ERROR
FLAG 4—[DECODE ‘ ‘ OR

REG. 1322

1306

SIDEBAND O —=
SIDEBAND 11—+

1316

SIDEBAND 2 —»=
SIDEBAND 3

www fastio.com

LI

4

e hiASK

ERROR FLAG
1324

UPSTREAM
SIDEBAND BIT

oo FDRNER FLAGS

http://www.fastio.com/

ClibPD

US 6,990,566 B2
Page 2

U.S. PATENT DOCUMENTS

5,880,598 A 3/1999 Duongcceeeviinnnnns 326/41
5,956,518 A 9/1999 DeHon et al. e 712/15
6,681,316 B1* 1/2004 Clermidy et al. 712/15

OTHER PUBLICATIONS

Razdan, et al.; “A High-Performance Microarchitecture with
Hardware-Programmable Functional Units”; Micro-27 Pro-
ceedings of the 27th Annual International Symposium on
Microarchitecture; Nov. 30-Dec. 2, 1994; pp. 172-180.
Guo, et al.; “A Novel Programmable Active Memories:
Reconfigurable Systems Come of Age”; IEEE Transactions
on VLSI Systems; 1995; pp. 1-15.

Hon, et al.; “Reinventing Computing,” Mar. 1996; MIT Al
Lab, p. 1.

Baker, “Programming Silicon”; Aug. 28, 1995, Electronic
Engineering Times; p. 73.

Brown; “Smart Compilers Puncture Code Bloat”, Oct. 9,
1995; Electronic Engineering Times; pp. 38 and 42.
Snyder; “A Taxonomy of Synchronous Parallel Machines”;
Proceedings of the 1988 International Conference on Paral-
lel Processing; Aug. 15-19, 1998; pp. 281-285.

Gray, et al.; “Configurable Hardware: A New Paradigm for
Computation™; 1989; Massachusetts Institute of Technol-
ogy; pp- 279-296.

Carter, et al.; “A User Programmable Reconfigurable Logic
Array”; IEEE 1986 Custom Integrated Circuits Conference;
pp- 233-235.

Fiske, et al.; “The Reconfigurable Arithmetic Processor”;
The 15th Annual International Symposium on Computer
Architecture; May 30-Jun. 2, 1988; pp. 30-36.

www fastio.com

Beal, et al.; Design of a Processor Element for a High
Performance Massively Parallel SIMD System; Int’l Journal
of High Speed Computing, vol. 7, No. 3; Sep. 1995, pp.
365-390.

Synder; “An Inquiry into the Benefits of Multiguage Parallel
Computation”; Proceedings of the 1995 International
Conference on Parallel Processing; Aug. 2-23, 1995; pp.
488-492.

Wang, et al; “An Array Architecture for Reconfigurable
Datapaths: More FPGAs,” WR. Moore & Luk; 1994
Abingdon EE&CS Book; pp. 35-46.

Bridges; :The GPA Machine: A Generally Partitionable
MSIMD Architecture; IEEE Third Symposium on The
Frontiers of Massively Parallel Computation, Feb. 1990, pp.
196-203.

Morton, et al.; “The Dynamically Reconfigurable CAP Ar-
ray Chip I”; IEEE Journal of Solid State Circuits, vol.
SC-21, No. 5, Oct. 1986, pp. 820-826.

Alexander, et al.; “A Reconfigurable Approach to a Systolic
Sorting Architecture”; IEEE Feb. 1989; pp. 1178-1182.
Blazek, et al.; “Design of a Reconfigurable Parallel RISC-
Machine™; North-Holland Microprocessing and
Microprogramming, 1987; pp. 39-46.

Masera, et al.; “A Microprogrammable Parallel Architecture
for DSP”; Proceedings of the International Conference on
Circuits and Systems, Jun. 1991; pp. 824-827.

Xilinx Advance Product Information; “XC6200 Field
Programmable Gate Arrays”; Jan. 9, 1997 (Version 1.8); pp.
1-53.

* cited by examiner

http://www.fastio.com/

US 6,990,566 B2

Sheet 1 of 20

Jan. 24, 2006

U.S. Patent

Oll—_] L80d | 180d | 180d | 1¥0d | LJOd
o]} o/1 | 0/ o/l | o/I | 0/
1¥0d 140d
0/! 0/l
140d 140d
0/ _ 0/
901
hmma Hmma
0/ 0/
¥300030
NOILONYLSNI S-S
1504l | 378vEN9IINOD 1404
0/l 0/
1404 140d
0/ 0/
- 7
oLl MITIONINOD AVHNY »mOzuz_u4m<mao:4oo oLl
ONINAYIO0Yd o
Hmwa Hmma Hmma Hmwa Hmma
o/t | o/t | o/t | o/t | 0o/
o1
) OIA

www fastio.com

ClibPD

http://www.fastio.com/

US 6,990,566 B2

Sheet 2 of 20

Jan. 24, 2006

U.S. Patent

N0 AYYVD « NI AYYYO
(1804 NOILONS. ASOMINI - >y imos ~ o1 &y {104 NOLONNS 1177]
r 1N0™0 P
Zle ’ _ N N A4
1z NI_8 N ¥ee
®
|
r il
Ny o34 YA S
LJ0d— g L40d v _
_ o1z LA _
[8 190d %JOMIIN |-e——C—»yav g %9018 dQv v LY an\éogmz |
¢NN\ AMOWIN | -
Elefe]) IM
v1vQ _
_
922 |
8BlC™
||||||| _1
G OId

www fastio.com

ClibPD

http://www.fastio.com/

US 6,990,566 B2

Sheet 3 of 20

Jan. 24, 2006

U.S. Patent

y

v 140d ONILYOd —@——

90¢

\ i

r||lln.l_

TV

104INOD WS4
1007 T104INOI

4

N ey

—®— ¢ 140d INILVO4

1 Y

N

90¢

| 140d ONILYO14

2 1400 ONILYOJ

MHGOMLIN € T3ATT
MNJOMLIN ¢ 131
MHOMLAIN L 13ATT

90¢

\

N.E AN

AN/ N

|
|
|
[
|
|
|
|
|
|
140d NOILONN4 | 1|
|
|
|
|
|

REE—

/

MHOMLIN € 13A1
MYOMLIN ¢ T3ATF
MHOMLIN | T3ATT

140d NOIINN
nwv

_

|

y
T

_

_

| 90¢
|

|

|

|

|

|
L

1404

Mo []
A A
mom\ ¢ m AI») \I»IL,/
«|||L _r N * *
g 55\%%”_&@% g * AJOWIN
@om\ v f

¥1vQ/SS3¥aav v

/J

90¢

IR

www fastio.com

ClibPD

http://www.fastio.com/

U.S. Patent Jan. 24, 2006 Sheet 4 of 20 US 6,990,566 B2

706\\ '

706\\

FIG.4
704\
704\\
704\\

A

704~
702
{ y/704

|

704\\
704\\
704\\

ClibPD www fastio.com

http://www.fastio.com/

U.S. Patent Jan. 24, 2006 Sheet 5 of 20 US 6,990,566 B2

650\\

650\\ '

650\

650\\

FIG.5
650~
650~
650~

650

A
!

650\\
A

A
!

ClibPD www fastio.com

http://www.fastio.com/

U.S. Patent Jan. 24, 2006 Sheet 6 of 20 US 6,990,566 B2

| A
| 1
k—856

FIG.6
B

852

ClibPD www fastio.com

http://www.fastio.com/

US 6,990,566 B2

Sheet 7 of 20

Jan. 24, 2006

U.S. Patent

8¢l
J Y

[¥] 30n03Y 104INOD

(¥X) S¥010313S

[e“—=—HOIHLINW ‘IN0 NV

8X¢

Adwxrvo ONY O '8 VN3N

<72 S140d ONILYO1S

3XV

d@rv 1NdNI 30N03Y 104INOD

——S140d 1NdNI

8XY

—~4—=(IND) 9I4NOD
6XZ

(91) STVNIIS _ 01x) A.- 8X¥ | LNdLNO ¢
IENTIST %91 91X
_gz11 _| s¥3M¥0 10d1no €7 9011—"
T
6XY (¥X) SIHOLIMS
(8x91) viva - ~ ONILNOY ¢
8X9 1 -
N YOLL—
X9 1 ‘.
(91) SIWNIIS gxg | ¥010373S LNdNI
NYIYLSNMOQ .| NOILYYNOIINOD €1
X8
FNN: NO:L
L OIA

www fastio.com

ClibPD

http://www.fastio.com/

U.S. Patent Jan. 24, 2006 Sheet 8 of 20 US 6,990,566 B2

FIG.8 /‘1200

1202 1210
L3_W1 IN—>\(— L3_W1—>\(-
L3_W2 [N— L3 W2 —»
L3_NT [IN—» L3_N1T—=
L3_N2 IN—= L3_N2 —» L3 _SWi1
L3_ET IN— L3_ET1T—» OUTPUT
L3_EZ IN—= L3_E2 —»
1206
L3_S1T IN—» L3_S1—
A L3sw1_reven
L3_S2 IN—» ¢ L3_S2 —
2 " CONFIGURATION 2
L3sw1_def -
SELECT LOGIC
1204 -
W1 IN—
L3 N L3swl_rev
L3_W2 [N— L3sw1_def
L3 N1 [IN—» N
- -
L3_N2Z IN— >/
L3_ET1T IN— Y
ERROR FLAG
L3_E2 IN—]
DRIVER FLAGS
L3_ST IN—=
L3_S2 IN—»]
4

L3swl_rev

ClibPD www fastio.com

http://www.fastio.com/

US 6,990,566 B2

Sheet 9 of 20

Jan. 24, 2006

U.S. Patent

1ST €T | ¥S €1 | €S €71 | ¢S ¢ L
PSTCT | €S €1 | CS €1 | LS ¢ 9
L3¢ | 3T | €3 €1 | 23 ¢ S
P37€T | €3¢ | 23 €T | L3 € 14
INTET [PNTCT | €N €7 | ZN €7 ¢
PNCT | ENTCT | N €1 | IN €7 14
LM ST | PMTET | SM T | M T _
M T SMTET | M T | LM ¢ 0
ANTVA
LNdLNO | LNdLNO | LNdLNO | 1NdINO | A3d MSEI
YMS €T EMS ST ZMST €T LMS €140 430 MSEL
6 I1Ad

[ro.com

fas

/’\“ /

WA

ClibPD

http://www.fastio.com/

US 6,990,566 B2

Sheet 10 of 20

Jan. 24, 2006

U.S. Patent

A WIW | O WIN [HIH 1IN | oy | ¢
O W3IW | 8 W3N | 8 W3N | v WIN z
¢ =E ¥l Cd4 _
| d 2d4 2d4 RE 0
INdLNO | INdLNO | LNdLNO | LNdLNO | 3NTYA
#INOCT | €INOCT | 2INOCT | 1INOCT | 914NOD
01 914

[ro.com

fas

/\ /’\“,

ClibPD

http://www.fastio.com/

US 6,990,566 B2

Sheet 11 of 20

Jan. 24, 2006

U.S. Patent

SOV %z%fvv.&rv

~—¢ ANVv83dIS
~— ¢ (UNV83dIS

S91EL
«— | gNv83aIS
MY~ -— 0 gNvg3als
118 aNVS3QIS /(
NERIEYE i4 90¢ |
¢NMT\ \A
IV1d HOHYT =— Y Y
J - 03y | yO 300030 =003
44N} A‘ 40OYY3
119 gNvg3dls _ fﬁom_
_J
Ocel— geel . ~—¢ v1vQ
sng ¢ B
13A37 = F o, «— 7 Y1VQ
«— | V1VQ
el 0 V1vQ
Nom_‘b/
INSIN |

www fastio.com

ClibPD

http://www.fastio.com/

US 6,990,566 B2

Sheet 12 of 20

Jan. 24, 2006

U.S. Patent

CMSTCT|ZMSTET[IMSTET [¥MSTET| EMSTET| ZMSTET| LMSTET [PMSTET| €

PMSTET|EMSTCT [ZMSTET | IMSTET | ¥MSTET| EMSTET| ZMSTET[IMSTET| T

$INOCT | CINOCT | ZINOET | LINOCT | $INOCT | £INOET | ZINOgT | 1IN0gT |

PNTET | ENTET | ZNTET | INTET | vMTET | SMTET | ZMTET | IMTET 0

INdLNO | INdLNO | INdLNO | LNLNO | INDLNO | LNDLNO | LNdLNO | LNdLNO | LNJLNI

$STE1 | ©STE€1 | 2STE1 | 1STEN | vATET | €3 €71 | 23T | 13T ¢ | viva
G} IoIAd

www fastio.com

ClibPD

http://www.fastio.com/

U.S. Patent Jan. 24, 2006 Sheet 13 of 20 US 6,990,566 B2

FIG.13
1400

1402
g 1404 x/
L3 W3 —j—»{

L3_W4

L3_W3in L3_W4in
9

L3_N3—~p~ L3_N4

L3_N3in — . . L3_Néin

L3 53%» 74;3 méﬁ L3_E4

L3_E3in
L3 Ss—i%if*-
L3_S3

n
Eii;_ _;2?\
L3cfg_sel

L3_E4in

L3_S4
L3_S4in

L

ClibPD www fastio.com

http://www.fastio.com/

US 6,990,566 B2

Sheet 14 of 20

Jan. 24, 2006

U.S. Patent

¥ST¢1/¢ST ¢

$37¢71/¢37¢7

YNT /SN T

YMTCT/IM T

0

1NdLINO J0L0313S LNdNI "OIINOD

AN

anipA |9s~ byo¢ |

[ro.com

fas

/\ /’\“,

ClibPD

http://www.fastio.com/

ClibPD

U.S. Patent Jan. 24,

2006 Sheet 15 of 20

CONFIGURATION
NETWORK SOURCE

1006—~\\

US 6,990,566 B2

CONFIGURATION

NETWORK
INTERFACE

1002}3_

[L

//—1006

CONFIGURATION
NETWORK
INTERFACE

-

[]

www fastio.com

[]

http://www.fastio.com/

US 6,990,566 B2

Sheet 16 of 20

Jan. 24, 2006

U.S. Patent

v1vQ NV3IYLS 3LAG 7

[0:£] LNNOD INNOD 3LA8 S

6 3¥N914 33S 1X3LNOD 9

[0:£] sS3yaav 31A8 MO1 SS3IYAQY b

[0:2] MSVYI 3LA8 MO MSVN ¢

{{8:71]SS340av ‘10313S WIISAHJ/WWNLYIAL| 3LAS HOIH SS34AQY 4

(8 v LIMSYIW 19,1} 31AG HOIH MSYN |
SIN3ILNOD 3LAS8 EIPNS LNNOD

94914

[ro.com

fas

/’\“ /

WA

ClibPD

http://www.fastio.com/

US 6,990,566 B2

Sheet 17 of 20

Jan. 24, 2006

U.S. Patent

0 Ol 31VLS WS4

0 6 al %2078

0 g AYOWIN NIVA

w . 1X3LNOD NNY

0 19, 1=3LIYM FIGYNAVY HO0Hd

‘09,1 =

w 09.1=0v 3y 1X3LNOD NNY

5 4 19V NNY YO0 Hd

w F 1X3LNOD TIVLS

5 QIYIMAYVH

L 0 LX3LNOO 13S3Y

0 QIYIMAHVYH
(LX3ILNOD HONIW) | (LX3ILNOD dHOrvW) | 3Li¥m/av3y IXILNOD

«<0:2> SlIg +<$ 9> S1ig </> 119
L OIA

www fastio.com

ClibPD

http://www.fastio.com/

US 6,990,566 B2

Sheet 18 of 20

Jan. 24, 2006

U.S. Patent

| IX3INOD dONIN
0 1X3LNOD JONIN

NOILYHNIIANOD NNy

| LX3LNOD dONIW
0 1X3LNOD JONIN

NOILYYNOIANOD NNY

TIVLS

373344

TIVLS

4dv310

S3IAONW TIVLS

S3AOW 1353

TIGYNAYHO04d | | T18Y AWV E908d | | a39IMaNVH Q3MAYVH
¢ IXILNOD 2 LX3LNOD L 1X3LNOD 0 LXILNOD
HOPYIA SOPY I HOrY I SOPY A
30y —/ 90y —' yOy—' z0v—/

NOILY ¥N9I4NOD
S3TI0HLNOD i nds

0Ly =" NOILYHYNOIANOD TWEO10

&1 914

Stlo.com

YYARYAYY: (a

ClibPD

http://www.fastio.com/

US 6,990,566 B2

Sheet 19 of 20

Jan. 24, 2006

U.S. Patent

SYTIED
¢ O | 13T 309
st SITIONINGD
NOLYENINOD 8 1N0=-AYAYD
é vio— Ve Ny TO9INO 5%,_8
T09INOD — y3153;
S140d pdi—] 2N ey oo ouiN
INdNI N4 T04INOD
J L JIVINIYS AT
z 4
219 019 _ = J9NV0
SYRONLIN
e ONY | T3]
7 4 | d]

809 909—" 10N HIHLINW 09

61 914

www . fastio.com

ClibPD

http://www.fastio.com/

U.S. Patent Jan. 24, 2006 Sheet 20 of 20 US 6,990,566 B2

—2008

2002
2006

FIG.20
FSM

CTRL
2004{;TRL

ClibPD www fastio.com

http://www.fastio.com/

ClibPD

US 6,990,566 B2

1

MULTI-CHANNEL BI-DIRECTIONAL BUS
NETWORK WITH DIRECTION SIDEBAND
BIT FOR MULTIPLE CONTEXT
PROCESSING ELEMENTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 09/364,838 entitled THREE LEVEL DIRECT COM-
MUNICATION CONNECTIONS BETWEEN NEIGH-
BORING MULTIPLE CONTEXT PROCESSING ELE-
MENTS, filed on Jul. 30, 1999 U.S. Pat. No. 6,745,317, the
contents of which is expressly incorporated by reference as
though set forth in full.

FIELD OF THE INVENTION

This invention relates to array based computing devices.
More particularly, this invention relates to a network for
configuration of multiple context processing elements.

BACKGROUND OF THE INVENTION

Advances in semiconductor technology have greatly
increased the processing power of a single chip general-
purpose computing device. The relatively slow increase in
inter-chip communication bandwidth requires modern high
performance devices to use as much of the potential on-chip
processing power as possible. This results in large, dense
integrated circuit devices and a large design space of pro-
cessing architectures. This design space is generally viewed
in terms of granularity, wherein granularity dictates that
designers have the option of building very large processing
units, or many smaller ones, in the same silicon area.
Traditional architectures are either very coarse grain, like
microprocessors, or very fine grain, like field programmable
gate arrays (FPGAs).

Microprocessors, as coarse grain architecture devices,
incorporate a few large processing units that operate on wide
data words, each unit being hardwired to perform a defined
set of instructions on these data words. Generally, each unit
is optimized for a different set of instructions, such as integer
and floating point, and the units are generally hardwired to
operate in parallel. The hardwired nature of these units
allows for very rapid instruction execution. In fact, a great
deal of area on modern microprocessor chips is dedicated to
cache memories in order to support a very high rate of
instruction issue. Thus, the devices efficiently handle very
dynamic instruction streams.

Most of the silicon area of modern microprocessors is
dedicated to storing data and instructions and to control
circuitry. Therefore, most of the silicon area is dedicated to
allowing computational tasks to heavily reuse the small
active portion of the silicon, the arithmetic logic units
(ALUs). Consequently very little of the capacity inherent in
a processor gets applied to the problem; most of the capacity
goes into supporting a high diversity of operations.

Field programmable gate arrays, as very fine grain
devices, incorporate a large number of very small processing
elements. These elements are arranged in a configurable
interconnected network. The configuration data used to
define the functionality of the processing units and the
network can be thought of as a very large semantically
powerful instruction word allowing nearly any operation to
be described and mapped to hardware.

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

2

Conventional FPGAs allow finer granularity control over
processor operations, and dedicate a minimal area to instruc-
tion distribution. Consequently, they can deliver more com-
putations per unit of silicon than processors, on a wide range
of operations. However, the lack of resources for instruction
distribution in a network of prior art conventional FPGAs
make them efficient only when the functional diversity is
low, that is when the same operation is required repeatedly
and that entire operation can be fit spatially onto the FPGAs
in the system.

Furthermore, in prior art FPGA networks, retiming of data
is often required in order to delay data. This delay is required
because data that is produced by one processing element
during one clock cycle may not be required by another
processing element until several clock cycles after the clock
cycle in which it was made available. One prior art tech-
nique for dealing with this problem is to configure some
processing elements to function as memory devices to store
this data. Another prior art technique configures processing
elements as delay registers to be used in the FPGA network.
The problem with both of these prior art technique is that
valuable silicon is wasted by using processing elements as
memory and delay registers.

Dynamically programmable gate arrays (DPGAs) dedi-
cate a modest amount of on-chip area to store additional
instructions allowing them to support higher operational
diversity than traditional FPGAs. However, the silicon area
necessary to support this diversity must be dedicated at
fabrication time and consumes area whether or not the
additional diversity is required. The amount of diversity
supported, that is, the number of instructions supported, is
also fixed at fabrication time. Furthermore, when regular
data path operations are required all instruction stores are
required to be programmed with the same data using a global
signal broadcast to all DPGAs.

The limitations present in the prior art FPGA and DPGA
networks in the form of limited control over configuration of
the individual FPGAs and DPGAs of the network severely
limits the functional diversity of the networks. For example,
in one prior art FPGA network, all FPGAs must be config-
ured at the same time to contain the same configurations.
Consequently, rather than separate the resources for instruc-
tion storage and distribution from the resources for data
storage and computation, and dedicate silicon resources to
each of these resources at fabrication time, there is a need for
an architecture that unifies these resources. Once unified,
traditional instruction and control resources can be decom-
posed along with computing resources and can be deployed
in an application specific manner. Chip capacity can be
selectively deployed to dynamically support active compu-
tation or control reuse of computational resources depending
on the needs of the application and the available hardware
resources.

SUMMARY OF THE INVENTION
A method and an apparatus for configuration of multiple
context processing elements (MCPEs)are described.

According to one aspect of the invention, the structure that
joins the MCPE cores into a complete array in one embodi-
ment is actually a set of several mesh-like interconnect
structures. Each interconnect structure forms a network, and
each network is independent in that it uses different paths,
but the networks join at MCPE input switches. The network
structure of one embodiment of the present invention is
comprised of a local area broadcast network (level 1), a
switched interconnect network (level 2), a shared bus net-

http://www.fastio.com/

ClibPD

US 6,990,566 B2

3

work (level 3), and a broadcast network. In one embodiment,
the level 3 network is used to carry configuration data for the
MCPEs while the broadcast network is used to carry con-
figuration data for the level 3 network drivers and switches.
In one embodiment, the level 3 network is bidirectional and
dynamically routable.

Each multiple context processing element in a networked
array of multiple context processing elements has an
assigned physical identification. This physical identification
may be assigned at the time of network development. Virtual
identifications may also be assigned to a number of the
multiple context processing elements. Data is transmitted to
at least one of the multiple context processing elements of
the array. The data comprises control data, configuration
data, an address mask, and a destination identification. The
transmitted data is also used to select whether the physical
identification or the virtual identification will be used to
select multiple context processing elements for manipula-
tion.

The transmitted address mask is applied to the physical or
virtual identification and to a destination identification. The
masked physical or virtual identification is compared to the
masked destination identification. When the masked physi-
cal or virtual identification of a multiple context processing
element matches the masked destination identification, at
least one of the number of multiple context processing
elements are manipulated in response to the transmitted
data. Manipulation comprises programming a multiple con-
text processing element with at least one configuration
memory context and selecting a configuration memory con-
text to control the functioning of the multiple context
processing element. The manipulation may occur while the
multiple context processing element is executing a present
function. The manipulated multiple context processing ele-
ments define at least one region of the networked array, the
region having an arbitrary shape.

These and other features, aspects, and advantages of the
present invention will be apparent from the accompanying
drawings and from the detailed description and appended
claims which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which:

FIG. 1 is the overall chip architecture of one embodiment.
This chip architecture comprises many highly integrated
components.

FIG. 2 is an eight bit MCPE core of one embodiment of
the present invention.

FIG. 3 is a data flow diagram of the MCPE of one
embodiment.

FIG. 4 is the level 1 network of one embodiment.

FIG. 5 is the level 2 network of one embodiment.

FIG. 6 is the level 3 network of one embodiment.

FIG. 7 is a diagram of features of an array node of a level
3 network.

FIG. 8 is an embodiment of a switch architecture of
MCPE input switch.

FIG. 9 illustrates a selection between eight level 3 inputs
using a single input switch.

FIG. 10 shows an encoding of configuration words for a
level 3 network.

FIG. 11 is an embodiment of an output driver of a level
3 network.

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 12 shows inputs to a multiplexor of the output driver
of FIG. 11.

FIG. 13 is a diagram of an embodiment of a configuration
input selector of a level 3 network.

FIG. 14 shows an encoding for a selection among #3
connections and #4 connections of a level 3 network.

FIG. 15 is the broadcast, or configuration, network used
in one embodiment.

FIG. 16 is an encoding of the configuration byte stream as
received by the CNI in one embodiment.

FIG. 17 is an encoding of the command/context byte in
one embodiment.

FIG. 18 is the MCPE configuration memory structure of
one embodiment.

FIG. 19 shows the major components of the MCPE
control logic of one embodiment.

FIG. 20 is the FSM of the MCPE controller of one
embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

A unified configuration and control network for multiple
context processing elements is described. In the following
description, for purposes of explanation, numerous specific
details are set forth in order to provide a thorough under-
standing of the present invention. It will be evident, how-
ever, to one skilled in the art that the present invention may
be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid obscuring the present
invention.

FIG. 1 is the overall chip architecture of one embodiment.
This chip architecture comprises many highly integrated
components. While prior art chip architectures fix resources
at fabrication time, specifically instruction source and dis-
tribution, the chip architecture of the present invention is
flexible. This architecture uses flexible instruction distribu-
tion that allows position independent configuration and
control of a number of multiple context processing elements
(MCPESs) resulting in superior performance provided by the
MCPEs. The flexible architecture of the present invention
uses local and global control to provide selective configu-
ration and control of each MCPE in an array; the selective
configuration and control occurs concurrently with present
function execution in the MCPEs.

The chip of one embodiment of the present invention is
composed of, but not limited to, a 10x10 array of identical
eight-bit functional units, or MCPEs 102, which are con-
nected through a reconfigurable interconnect network. The
MCPEs 102 serve as building blocks out of which a wide
variety of computing structures may be created. The array
size may vary between 2x2 MCPEs and 16x16 MCPEs, or
even more depending upon the allowable die area and the
desired performance. A perimeter network ring, or a ring of
network wires and switches that surrounds the core array,
provides the interconnect between the MCPEs and perimeter
functional blocks.

Surrounding the array are several specialized units that
may perform functions that are too difficult or expensive to
decompose into the array. These specialized units may be
coupled to the array using selected MCPEs from the array.
These specialized units can include large memory blocks
called configurable memory blocks 104. In one embodiment
these configurable memory blocks 104 comprise eight

http://www.fastio.com/

ClibPD

US 6,990,566 B2

-

d
blocks, two per side, of 4 kilobyte memory blocks. Other
specialized units include at least one configurable instruction
decoder 106.

Furthermore, the perimeter area holds the various inter-
faces that the chip of one embodiment uses to communicate
with the outside world including: input/output (I/O) ports; a
peripheral component interface (PCI) controller, which may
be a standard 32-bit PCI interface; one or more synchronous
burst static random access memory (SRAM) controllers; a
programming controller that is the boot-up and master
control block for the configuration network; a master clock
input and phase-locked loop (PLL) control/configuration; a
Joint Test Action Group (JTAG) test access port connected
to all the serial scan chains on the chip; and I/O pins that are
the actual pins that connect to the outside world.

FIG. 2 is an eight bit MCPE core of one embodiment of
the present invention. Primarily the MCPE core comprises
memory block 210 and basic ALU core 220. The main
memory block 210 is a 256 word by eight bit wide memory,
which is arranged to be used in either single or dual port
modes. In dual port mode the memory size is reduced to 128
words in order to be able to perform two simultaneous read
operations without increasing the read latency of the
memory. Network port A 222, network port B 224, ALU
function port 232, control logic 214 and 234, and memory
function port 212 each have configuration memories (not
shown) associated with them. The configuration memories
of these elements are distributed and are coupled to a
Configuration Network Interface (CNI) (not shown) in one
embodiment. These connections may be serial connections
but are not so limited. The CNI couples all configuration
memories associated with network port A 222, network port
B 224, ALU function port 232, control logic 214 and 234,
and memory function port 212 thereby controlling these
configuration memories. The distributed configuration
memory stores configuration words that control the configu-
ration of the interconnections. The configuration memory
also stores configuration information for the control archi-
tecture. Optionally it can also be a multiple context memory
that receives context selecting signals broadcast globally and
locally from a variety of sources.

The structure of each MCPE allows for a great deal of
flexibility when using the MCPEs to create networked
processing structures. FIG. 3 is a data flow diagram of the
MCPE of one embodiment. The major components of the
MCPE include static random access memory (SRAM) main
memory 302, ALU with multiplier and accumulate unit 304,
network ports 306, and control logic 308. The solid lines
mark data flow paths while the dashed lines mark control
paths; all of the lines are one or more bits wide in one
embodiment. There is a great deal of flexibility available
within the MCPE because most of the major components
may serve several different functions depending on the
MCPE configuration.

The MCPE main memory 302 is a group of 256 eight bit
SRAM cells that can operate in one of four modes. It takes
in up to two eight bit addresses from A and B address/data
ports, depending upon the mode of operation. It also takes in
up to four bytes of data, which can be from four floating
ports, the B address/data port, the ALU output, or the high
byte from the multiplier. The main memory 302 outputs up
to four bytes of data. Two of these bytes, memory A and B,
are available to the MCPE’s ALU and can be directly driven
onto the level 2 network. The other two bytes, memory C
and D, are only available to the network. The output of the
memory function port 306 controls the cycle-by-cycle
operation of the memory 302 and the internal MCPE data

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

6

paths as well as the operation of some parts of the ALU 304
and the control logic 308. The MCPE main memory may
also be implemented as a static register file in order to save
power.

Each MCPE contains a computational unit 304 comprised
of three semi-independent functional blocks. The three
semi-independent functional blocks comprise an eight bit
wide ALU, an 8x8 to sixteen bit multiplier, and a sixteen bit
accumulator. The ALU block, in one embodiment, performs
logical, shift, arithmetic, and multiplication operations, but
is not so limited. The ALU function port 306 specifies the
cycle-by-cycle operation of the computational unit. The
computational units in orthogonally adjacent MCPEs can be
chained to form wider-word data paths.

The MCPE network ports connect the MCPE network to
the internal MCPE logic (memory, ALU, and control). There
are eight ports in each MCPE, each serving a different set of
purposes. The eight ports comprise two address/data ports,
two function ports, and four floating ports. The two address/
data ports feed addresses and data into the MCPE memories
and ALU. The two function ports feed instructions into the
MCPE logic. The four floating ports may serve multiple
functions. The determination of what function they are
serving is made by the configuration of the receivers of their
data.

The MCPEs of one embodiment are the building blocks
out of which more complex processing structures may be
created. The structure that joins the MCPE cores into a
complete array in one embodiment is actually a set of several
mesh-like interconnect structures. Each interconnect struc-
ture forms a network, and each network is independent in
that it uses different paths, but the networks do join at the
MCPE input switches. The network structure of one embodi-
ment of the present invention is comprised of a local area
broadcast network (level 1), a switched interconnect net-
work (level 2), a shared bus network (level 3), and a
broadcast network. In one embodiment, the level 3 network
is used to carry configuration data for the MCPEs while the
broadcast network is used to carry configuration data for the
level 3 drivers and switches.

For purposes of discussion the networks are identified as
a level 1, level 2, and level 3 networks and corresponding
signals transmitted thereon as first signals, second signals
and third signals, respectively. However, this form of iden-
tification for purposes of discussions does not dictate the
ordering of transmission of the signals.

FIG. 4 is the level 1 network of one embodiment. The
level 1 network, or bit-wide local interconnect, consists of
direct point-to-point communications between each MCPE
702 and the eight nearest neighbors 704. Each MCPE 702
can output up to 12 values comprising two in each of the
orthogonal directions, and one in each diagonal. The level 1
network carries bit-oriented control signals between these
local groups of MCPEs. The connections of level 1 only
travel one MCPE away, but the values can be routed through
the level 1 switched mesh structure to other MCPEs 706.
Each connection consists of a separate input and output wire.
Configuration for this network is stored along with MCPE
configuration.

FIG. 5 is the level 2 network of one embodiment. The
level 2 network, or byte-wide local interconnect, is used to
carry data, instructions, or addresses in local groups of
MCPEs 650. It is a byte-wide version of level 1 having
additional connections. This level uses relatively short wires
linked through a set of switches. The level 2 network is the
primary means of local and semi-local MCPE communica-
tion, and level 2 does require routing. Using the level 2

http://www.fastio.com/

ClibPD

US 6,990,566 B2

7

network each MCPE 650 can output up to 16 values, at least
two in each of the orthogonal directions and at least one in
each diagonal. Each connection consists of separate input
and output wires. These connections only travel one MCPE
away, but the values can be routed through level 2 switches
to other MCPEs. Preferably configuration for this network is
also stored along with MCPE configuration.

FIG. 6 is the level 3 network of one embodiment. In this
one embodiment, the level 3 network comprises connections
852 of four channels between each pair of MCPEs 854 and
856 arranged along the major axes of the MCPE array
providing for communication of data, instructions, and
addresses from a single MCPE or a logical grouping of
MCPEs to a periphery component or different MCPE group.
In one embodiment, the data includes configuration data for
the MCPEs. These connections can be byte serial or byte
parallel. Communication in the level 3 network is bi-direc-
tional by nature. For example, a connection to a periphery
memory requires that data be both read and written. In one
embodiment, to reduce the number of physical channels
required in the network and the size of the level 3 MCPE
switches, the level 3 network is physically bidirectional. If
the level 3 network is not bidirectional, physical up channels
and down channels are required for logical read/write con-
nections. Multiplexing onto a single bus is latency expen-
sive, but saves on critical wire resources. In cases where
parallelism is needed, two channels may be used.

The level 3 network in the MCPE array consists of
connections of four channels between each pair of MCPEs
arranged along the major axes of the two dimensional mesh.
In one embodiment, each connection consists of an 8-bit
bidirectional port (implying tri-state drivers on the outputs)
with two directional sideband bits for signaling.

At the physical layer, the sideband bits indicate when a
given direction is driving its value. Sideband bits are also
interpreted by the endpoints of a given level 3 circuit to
enable higher layer protocol information to be encoded. In
one embodiment, a sideband bit is driven if and only if a
value is currently being driven. This means that unless there
is a software error, the sideband bits should never be driven
in both directions simultaneously. An error signal is asserted
by the driver logic if this event ever occurs dynamically.

In one embodiment, the bidirectional data busses are
named: L3__ N1,L.3_ _N2,1.3_N3,1.3_ N4,13_El etc. The
sideband signals are labeled L.3_ Nlout, etc. for upstream
(outgoing) connections and L.3_ Nlin for downstream (in-
coming) connections. In one embodiment, the level 3 wires,
unlike level 1 and level 2 wires, are not numbered clockwise
around the cell, but are numbered according to the X or Y
distance from the southwest (SW) corner. This is done so
that all “#1” connections connect straight through to another
“#1” connection.

In one embodiment, level 3 physical connections are
capable of supporting unidirectional and bidirectional com-
munication. Level 3 connections include 8, 16, 24 and 32 bit
wide links made up of byte-wide channels. The level 3
network may be byte serial or word serial, that is, words may
be sequentialized down a byte-wide channel or sent down a
word-wide channel.

In one embodiment, logical connections between two
level 3 nodes may be characterized as static and unidirec-
tional, as asynchronous and unidirectional or as asynchro-
nous and directional.

In the case of static unidirectional connections, the net-
work channel is always moving data in a single direction to
an endpoint that has information (acquired at compile time)

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

8

regarding what to do with the data. Latency and a data
stream structure is predetermined.

In the case of asynchronous unidirectional connections,
the network starts in a “ready to send” state and the data is
intended to move in one direction (single value, packet or
full stream). The receiving endpoint then sends a “go ahead”
signal which starts the transfer. The data arrives either a
known or unknown number of cycles later, depending upon
endpoint configuration. When the number of cycles is
unknown, a sideband bit indicates valid data. If the local unit
cannot directly respond to the sideband bit, the local unit
may remain in a halt state until the bit arrives. When the
number of cycles is known, the execution unit may be
scheduled unless execution starts on receipt of data (that is,
unless a data driven architecture has been defined in soft-
ware). The connection is pre-configured by a software
construct not pertinent to the present invention.

In the case of asynchronous directional transfer, the
destination node sends a packet of data to the source. A
control bit remains asserted as long as the data sent remains
valid. The source port receives the packet of data and
interprets it as data, control information or as an identifica-
tion address that tells the port if it is the port asked to return
data. The source port determines whether it is the port asked
to return data by interpreting additional control or target
address words. The source port then returns a packet or
stream of data in response to the received packet. The
initiator has control of the logical network connection.

In one embodiment, the level 3 network is dynamically
routable, which supports position independence of hardware
modules. Configuration of a dynamically routable level 3
network is separate from the main MCPE configuration. A
connection between two endpoints through a series of level
3 array and periphery nodes is called a “circuit” and may be
set up and taken down by the configuration network. In one
embodiment, each connection 852 consists of an 8-bit bidi-
rectional port.

The MCPE node connects to 16 busses, four in each
cardinal direction. Each bus is associated with an output
driver. Selected subsets of the incoming busses are fed to a
set of four switches. The major features of an array node are
illustrated in FIG. 7. The level 3 configuration input selector
1102 receives downstream signals 1122 and data 1124 and
outputs configuration data to the CNI. The level 3 routing
switches 1104 receive downstream signals 1122 and data
1124 and send outputs to the input ports and to the control
reduce input. Data 1124 may also be output from level 3
routing switches 1104. The L3 output selectors 1106 receive
signals from the floating ports, memories A, B, C, and D, and
the ALU, and output signals to the output drivers 1128. The
control reduce input is connected to output drivers 1128.
Level 3 output drivers 1128 output upstream signals 1126
and data 1124. Level 3 output drivers 1128 also receive data
1124.

The level 3 routing switches 1104 provide limited con-
nectivity between routing tracks in the horizontal and ver-
tical directions as well as ‘capture’values that can be fed into
the MCPE input ports. The drivers on each side select the
value to drive onto the level 3 busses, a set of four MCPE
output selectors and inputs from the opposite side.

Two of the “tracks” in each direction (tracks #3 and #4)
provide inputs to the configuration network for configuring
the MCPE. Debugging readout is supported by replacing
one of the MCPE Mem inputs to the #4 output selector
switch with configuration data and configuring the level 3
nodes to create a circuit to the appropriate output port.

http://www.fastio.com/

ClibPD

US 6,990,566 B2

9

There are four level 3 routing switches in each MCPE,
each one associated with one of the four level 3 connections
on each side of the MCPE. One embodiment of a routing
switch architecture is shown in FIG. 8. The level 3 routing
switch 1200 includes a single switch which selects between
eight level 3 inputs, as shown in FIG. 9. L.3__SW1 takes its
input from W1, W2, N1, N2, E1, E2, S1, and S2, while
L3__SW2 takes its input from W2, W3, N2, N3, E2, E3, S2,
and S3, etc. This pattern allows the signals on the level 3
wires to change “tracks”.

In one embodiment, the switch 1200 outputs 8 bits of data,
in addition to the associated downstream (incoming) side-
band signal. These four outputs are fed into the MCPE input
ports and to the four output drivers associated with the inputs
of the switch (L3_SW1 outputs to W1, N1, E1, S1, while
L3 SW2 outputs to W2, N2, E2, S2, etc.).

The input selection is made by two configuration words
which control multiplexor 1210: L3sw*_def (Default
Selection) and L3sw*_rev (Reverse Selection). The first,
default selection is the normal mode. The reverse selection
is used when an level 3 connection “turns around”. This
occurs when the default direction sideband bit, which is
selected by the multiplexor 1202, is low, while the sideband
bit in the reverse direction, which is selected by the multi-
plexor 1204, is high and the 13sw*__reven (reverse enable)
configuration bit is high. In all other cases, the switch
selection is performed by the default configuration.

The selection logic also produces eight bits of “driver
flags”. One bit is sent to each driver associated with the
switch’s input. Each bit is set to zero unless the switch is
currently using that line’s input, in which case the bit is set
to one. The drivers use this bit to determine whether or not
the connection is being “turned around”.

The configuration select logic 1206 also produces an error
flag when both selected sideband bits are high. This signal
is propagated to an output pin of the chip so that the external
system can determine that an error has occurred. In addition,
the flag sets a register that is part of the global debugging
scan chain so that the location of the error can be deter-
mined. The error flag does not stop the operation of the chip
in any way.

In one embodiment, there are four MCPE output selectors
in each MCPE, labeled L3outl, L3out2, L3out3, and
L3out4. In one embodiment, each MCPE output selector is
a 4-input, 1l-output, 8-bit-wide multiplexor. The output
selectors take the floating port outputs and direct outputs of
the MCPE and select four busses (memory, ALU, accumu-
lator high byte) which are fed into the level 3 drivers. The
output selectors are controlled by the two-bit configuration
words L3outl-sel, L3out2-sel, L3out3-sel, and L3out4-sel.
One encoding of these words is shown in FIG. 10.

In one embodiment, there are 16 level 3 output drivers in
each MCPE, one for each level 3 line. FIG. 11 shows the
architecture of one embodiment of an output driver. The
main data path consists of a single selector multiplexor 1302
and a register 1312. The inputs to the multiplexor 1302 are
different for each driver. The inputs to the multiplexor 1302
are shown in FIG. 12. The register 1312 is selected when the
configuration bit “regen” is set high. The selection of which
input is output is made by the four incoming sideband bits
1316.

The four incoming sideband bits 1316 are bit-wise
ANDed with the inversion of the driver flags from the
switches and a configuration mask by logic 1306. Logic
1306 outputs a result to the decoder 1304 and to OR gate
1308. The result is used to select which inputs to a driver are
allowed to drive. If the mask is all zeros, the driver will

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

10

never drive. Also, if a driver flag goes high, the input of the
switch that generated the flag will be ignored.

The resulting four bits are used in a one-hot encoding of
the input selector. If more than one bit is high at the same
time, the decoder outputs an error flag 1322 and the Data 0
input is selected. This selection mechanism allows a level 3
connection that has multiple receivers to be “turned around”
by one of them.

If any of the masked sideband bits is high, then the driver
assumes that it is driving. This bit is sent out as the upstream
sideband bit 1324. The drive logic block 1326 checks to see
if the downstream block is also asserted using downstream
sideband bit 1320. If it is, the drive logic does not enable the
output driver and also asserts the error flag 1322. Otherwise,
the output driver is enabled. Error flag 1322 functions in the
same way as error flags in the switches.

In one embodiment, the I.3out4 selector has a special
function during configuration reads When a read operation
is initiated, the MCPE’s CNI block will switch the MemD
input to L.3out4 to its own configuration output. It will also
replace the reduce control[4] sideband bit with its own
sideband output. [.3out4 and the output drivers must be
properly configured in order for this data to be sent out on
the network; the CNI does not change the network settings
in this mode.

In one embodiment, the configuration input selector is a
special level 3 switch that is used only to input configuration
data into the MCPE’s CNI. FIG. 13 shows an architecture of
a configuration input selector 1400. Configuration input
selector 1400 includes two multiplexors 1402 and 1404 that
use a single configuration word to select from the incoming
#3 and #4 connections. Two words are sent to the CNI,
which chooses one of them. FIG. 14 shows an encoding for
a selection among #3 connections and #4 connections.

In one embodiment, each MCPE has a single register that
will set to one whenever any of the error flags in the MCPE
go high for a full cycle. The register is visible on the scan
chain of the chip and provides external visibility to the level
3 error flags. The register will remain set until a full chip
reset occurs. In one embodiment, there are a total of 20 error
flags in the MCPE: 16 level 3 driver error flags and four level
3 switch error flags.

FIG. 15 is the broadcast, or configuration, network used
in one embodiment. This broadcast network is an H-tree
network structure with a single source and multiple receivers
in which individual MCPEs 1002 may be written to. In one
embodiment, the broadcast network is the mechanism by
which configuration data for the level 3 network drivers and
switches is communicated, while the level 3 network is the
mechanism by which the MCPEs are configured. In other
embodiments, the broadcast network is the mechanism by
which both the MCPEs and the perimeter units are config-
ured programmed.

The broadcast network in one embodiment comprises a
nine bit broadcast channel that is structured to both program
and control the on-chip MCPE 1002 configuration memo-
ries. The broadcast network comprises a central source, or
Configuration Network Source (CNS) 1004, and one Con-
figuration Network Interface (CNI) block 1006 for each
major component, or one in each MCPE with others
assigned to individual or groups of non-MCPE blocks. The
CN11006 comprises a hardwired finite state machine, sev-
eral state registers, and an eight bit loadable clearable
counter used to maintain timing. The CNS 1004 broadcasts
to the CNIs 1006 on the chip according to a specific
protocol. The network is arranged so that the CNIs 1006 of
one embodiment receive the broadcast within the same clock

http://www.fastio.com/

ClibPD

US 6,990,566 B2

1

cycle. This allows the broadcast network to be used as a
global synchronization mechanism as it has a fixed latency
to all parts of the chip. Therefore, the broadcast network
functions primarily to program the level 3 network, and to
prepare receiving CNIs for configuration transactions. Typi-
cally, the bulk of configuration data is carried over the level
3 network, however the broadcast network can also perform
that function. The broadcast network has overriding author-
ity over any other programmable action on the chip.

A CNI block is the receiving end of the broadcast net-
work. Each CNI has two addresses: a physical, hardwired
address and a virtual, programmable address. The latter can
be used with a broadcast mask that allows multiple CNIs to
receive the same control and programming signals. A single
CNI is associated with each MCPE in the networked MCPE
array. This CNI controls the reading and writing of the
configuration of the MCPE contexts, the MCPE main
memory, and the MCPE configuration controller.

The CNS 1004 broadcasts a data stream to the CNIs 1006
that comprises the data necessary to configure the MCPEs
1002. In one embodiment, this data comprises configuration
data, address mask data, and destination identification data.
FIG. 16 is the encoding of the configuration byte stream as
received by the CNI in one embodiment. The first four bytes
are a combination of mask and address where both mask and
address are 15 bit values. The address bits are only tested
when the corresponding mask is set to “1”. The high bit of
the Address High Byte is a Virtual/Physical identification
selection. When set to “17, the masked address is compared
to the MCPE virtual, or programmable, identification; when
set to “0” the masked address is compared to the MCPE
physical address. This address scheme applies to a CNI
block whether or not it is in an MCPE.

Following the masked address is a command/context byte
which specifies which memory will be read from or written
to by the byte stream. FIG. 17 is the encoding of the
command/context byte in one embodiment. Following the
command/context byte is a byte count value. The byte count
indicates the number of bytes that will follow.

FIG. 18 is the MCPE configuration memory structure of
one embodiment. Each MCPE has four major contexts
402—408 of configuration memory. Each context contains a
complete set of data to fully describe the operation of the
MCPE, including the local network switching. In one
embodiment two of the contexts are hardwired and two are
programmable. Each of these contexts includes two inde-
pendently writeable minor contexts. In the programmable
major contexts the minor contexts are a duplication of part
of the MCPE configuration consisting primarily of the port
configurations. In the hardwired major contexts the minor
contexts may change more than just the port configurations.
The switching of these minor contexts is also controlled by
the configuration control. The minor contexts are identical in
structure but contain different run-time configurations. This
allows a greater degree of configuration flexibility because
it is possible to dynamically swap some parts of the con-
figuration without requiring memories to store extra major
contexts. These minor contexts allow extra flexibility for
important parts of the configuration while saving the extra
memory available for those parts that don’t need to be as
flexible. A configuration controller 410 finite state machine
(FSM) determines which context is active on each cycle.
Furthermore, a global configuration network can force the
FSM to change contexts.

The first two major contexts (0 and 1) may be hardwired,
or set during the design of the chip, although they are not so
limited. Major context 0 is a reset state that serves two

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

12

primary roles depending on the minor context. Major con-
text 1 is a local stall mode. When a MCPE is placed into
major context 1 it continues to use the configuration setting
of the last non-context 1 cycle and all internal registers are
frozen. This mode allows running programs to stall as a
freeze state in which no operations occur but allows pro-
gramming and scan chain readout, for debugging, to occur.

Minor context 0 is a clear mode. Minor context 0 resets
all MCPE registers to zero, and serves as the primary reset
mode of the chip. Minor context 0 also freezes the MCPE
but leaves the main memory active to be read and written
over by the configuration network.

Minor context 1 is a freeze mode. In this mode the internal
MCPE registers are frozen while holding their last stored
value; this includes the finite state machine state register.
This mode can be used as a way to turn off MCPE’s that are
not in use or as a reset state. Minor context 1 is useful to
avoid unnecessary power consumption in unused MCPEs
because the memory enable is turned off during this mode.

Major contexts 2 and 3 are programmable contexts for
user defined operations. In addition to the four major con-
texts the MCPE contains some configurations that do not
switch under the control of the configuration controller.
These include the MCPE’s identification number and the
configuration for the controller itself.

FIG. 19 shows the major components of the MCPE
control logic structure of one embodiment. The Control
Tester 602 takes the output of the ALU for two bytes from
floating ports 604 and 606, plus the left and right carryout
bits, and performs a configurable test on them. The result is
one bit indicating that the comparison matched. This bit is
referred to as the control bit. This Control Tester serves two
main purposes. First it acts as a programmable condition
code generator testing the ALU output for any condition that
the application needs to test for. Secondly, since these
control bits can be grouped and sent out across the level 2
and 3 networks, this unit can be used to perform a second or
later stage reduction on a set of control bits/data generated
by other MCPE’s.

The level 1 network 608 carries the control bits. As
previously discussed, the level 1 network 608 consists of
direct point-to-point communications between every MCPE
and it’s 12 nearest neighbors. Thus, each MCPE will receive
13 control bits (12 neighbors and it’s own) from the level 1
network. These 13 control bits are fed into the Control
Reduce block 610 and the MCPE input ports 612. The
Control Reduce block 610 allows the control information to
rapidly effect neighboring MCPEs. The MCPE input ports
allow the application to send the control data across the
normal network wires so they can cover long distances. In
addition the control bits can be fed into MCPEs so they can
be manipulated as normal data.

The Control Reduce block 610 performs a simple selec-
tion on either the control words coming from the level 1
control network, the level 3 network, or two of the floating
ports. The selection control is part of the MCPE configura-
tion. The Control Reduce block 610 selection results in the
output of five bits. Two of the output bits are fed into the
MCPE configuration controller 614. One output bit is made
available to the level 1 network, and one output bit is made
available to the level 3 network.

The MCPE configuration controller 614 selects on a
cycle-by-cycle basis which context, major or minor, will
control the MCPE’s activities. The controller consists of a
finite state machine (FSM) that is an active controller and
not just a lookup table. The FSM allows a combination of
local and global control over time that changes. This means

http://www.fastio.com/

ClibPD

US 6,990,566 B2

13

that an application may run for a period based on the local
control of the FSM while receiving global control signals
that reconfigure the MCPE, or a block of MCPEzs, to perform
different functions during the next clock cycle. The FSM
provides for local configuration and control by locally
maintaining a current configuration context for control of the
MCPE. The FSM provides for global configuration and
control by providing the ability to multiplex and change
between different configuration contexts of the MCPE on
each different clock cycle in response to signals broadcast
over a network. This configuration and control of the MCPE
is powerful because it allows an MCPE to maintain control
during each clock cycle based on a locally maintained
configuration context while providing for concurrent global
on-the-fly reconfiguration of each MCPE. This architecture
significantly changes the area impact and characterization of
an MCPE array while increasing the efficiency of the array
without wasting other MCPEs to perform the configuration
and control functions.
FIG. 20 is the FSM of the MCPE configuration controller
of one embodiment. In controlling the functioning of the
MCPE, control information 2004 is received by the FSM
2002 in the form of state information from at least one
surrounding MCPE in the networked array. This control
information is in the form of two bits received from the
Control Reduce block of the MCPE control logic structure.
In one embodiment, the FSM also has three state bits that
directly control the major and minor configuration contexts
for the particular MCPE. The FSM maintains the data of the
current MCPE configuration by using a feedback path 2006
to feed back the current configuration state of the MCPE of
the most recent clock cycle. The feedback path 2006 is not
limited to a single path. The FSM selects one of the available
configuration memory contexts for use by the corresponding
MCPE during the next clock cycle in response to the
received state information from the surrounding MCPEs and
the current configuration data. This selection is output from
the FSM in the form of a configuration control signal 2008.
The selection of a configuration memory context for use
during the next clock cycle occurs, in one embodiment,
during the execution of the configuration memory context
selected for the current clock cycle.
The present invention has been described with reference
to specific exemplary embodiments. Various modifications
and changes may be made to these embodiments by one of
ordinary skill in the art without departing from the broader
spirit and scope of the invention as set forth in the following
claims.
What is claimed is:
1. A method for dynamically operating a networked array
of multiple context processing elements (MCPEs), the
method comprising:
selectively transmitting data over a bidirectional shared
bus network, wherein the bidirectional shared bus
network comprises a plurality of channels between
pairs of MCPEs in the networked array; and

selectively transmitting a sideband bit, wherein the side-
band bit indicates a direction in which the data is
transmitted in the shared bus network.

2. The method of claim 1, wherein the shared bus network
comprises a shared bus switch structure, and a broadcast
network broadcasts configuration data for configuring the
switch structure.

3. The method of claim 1, further comprising selectively
transmitting first signals over a local area broadcast network
between MCPEs, wherein the first signals comprise bit-
oriented control signals for controlling respective MCPEs.

www fastio.com

10

15

20

25

30

35

40

45

50

55

60

65

14

4. The method of claim 1, further comprising selectively
transmitting second signals over a switched interconnect
network between MCPEs, wherein the second signals com-
prise data, instructions, and addresses of MCPEs within a
local group.

5. The method of claim 1, wherein the data comprises
configuration data for configuration of MCPEs, instructions
and addresses of MCPEs.

6. The method of claim 1, wherein a first sideband bit is
transmitted in a first direction and a second sideband bit is
transmitted in a second direction, the method further com-
prising generating an error signal when the first and second
sideband bits are driven simultaneously.

7. The method of claim 1, wherein the data is transmitted
during execution of a present function by at least one MCPE
of the networked array.

8. The method of claim 4, further comprising selecting an
active configuration for at least one of the plurality of
multiple context processing elements when a masked virtual
identification of the at least one of the plurality of MCPEs
corresponds to an address of the addresses of MCPEs in the
second signal.

9. The method of claim 4, further comprising:

assigning a physical identification (PID) and a virtual

identification (VID) to each of a plurality of MCPEs in
the networked array;

transmitting configuration data for configuration of at

least one MCPE, instruction, an address of the at least
one MCPE, and an address mask;

comparing the virtual identification masked with the

address mask to addresses of MCPEs; and

selecting an active configuration for the at least one of the

plurality of MCPEs and manipulating the MCPE when
the masked virtual identification of the at least one of
the plurality of MCPEs corresponds to the address.

10. The method of claim 9, wherein manipulating is
selected from the group comprising setting a finite state
machine state, setting a programmable run context, setting a
reset context, and setting a stall context.

11. Asystem for dynamically operating a networked array
of multiple context processing elements (MCPEs), compris-
ing:

data selectively transmitted over a shared bus network,

wherein the shared bus network comprises a plurality
of channels between pairs of MCPEs in the networked
array; and

a sideband bit selectively transmitted, wherein the side-

band bit indicates a direction in which the data is
transmitted in the shared bus network.

12. The system of claim 11, wherein the shared bus
network comprises a shared bus switch structure, and a
broadcast network broadcasts configuration data for config-
uring the shared bus switch structure.

13. The system of claim 11, further comprising first
signals selectively transmitted over a local area broadcast
network between MCPEs, wherein the first signals comprise
bit-oriented control signals for controlling respective
MCPEs.

14. The system of claim 11, further comprising second
signals selectively transmitted over a switched interconnect
network between MCPEs, wherein the second signals com-
prise data, instructions, and addresses of MCPEs within a
local group.

15. The system of claim 11, wherein the data comprises
configuration data for configuration of MCPEs, instructions
and addresses of MCPEs.

http://www.fastio.com/

ClibPD

US 6,990,566 B2

15

16. The system of claim 11, further comprising a first
sideband bit transmitted in a first direction and a second
sideband bit transmitted in a second direction, and means for
generating an error signal when the first and second side-
band bits are driven simultaneously.

17. The system of claim 11, wherein the data is transmit-
ted during execution of a present function by at least one
MCPE of the networked array.

18. The system of claim 15, further comprising an active
configuration for at least one of the plurality of multiple
context processing elements selected when a masked virtual
identification of the at least one of the plurality of MCPEs
corresponds to an address of the addresses of MCPEs in the
second signal.

19. The system of claim 15, further comprising:

means for assigning a physical identification (PID) and a

virtual identification (VID) to each of a plurality of
MCPEs in the networked array;

www fastio.com

10

15

16

configuration data for configuration of at least one MCPE,
instruction, an address of the at least one MCPE, and an
address mask;

means for comparing the virtual identification masked
with the address mask to addresses of MCPEs; and

means for selecting an active configuration for the at least
one of the plurality of MCPEs and means for manipu-
lating the MCPE when the masked virtual identification
of the at least one of the plurality of MCPEs corre-
sponds to the address.

20. The system of claim 19, wherein means for manipu-
lating is selected from the group comprising means for
setting a finite state machine state, means for setting a
programmable run context, means for setting a reset context,
and means for setting a stall context.

http://www.fastio.com/

	d:\p2mp\img\0000852721\06990566\300_0001.tif
	d:\p2mp\img\0000852721\06990566\300_0002.tif
	d:\p2mp\img\0000852721\06990566\300_0003.tif
	d:\p2mp\img\0000852721\06990566\300_0004.tif
	d:\p2mp\img\0000852721\06990566\300_0005.tif
	d:\p2mp\img\0000852721\06990566\300_0006.tif
	d:\p2mp\img\0000852721\06990566\300_0007.tif
	d:\p2mp\img\0000852721\06990566\300_0008.tif
	d:\p2mp\img\0000852721\06990566\300_0009.tif
	d:\p2mp\img\0000852721\06990566\300_0010.tif
	d:\p2mp\img\0000852721\06990566\300_0011.tif
	d:\p2mp\img\0000852721\06990566\300_0012.tif
	d:\p2mp\img\0000852721\06990566\300_0013.tif
	d:\p2mp\img\0000852721\06990566\300_0014.tif
	d:\p2mp\img\0000852721\06990566\300_0015.tif
	d:\p2mp\img\0000852721\06990566\300_0016.tif
	d:\p2mp\img\0000852721\06990566\300_0017.tif
	d:\p2mp\img\0000852721\06990566\300_0018.tif
	d:\p2mp\img\0000852721\06990566\300_0019.tif
	d:\p2mp\img\0000852721\06990566\300_0020.tif
	d:\p2mp\img\0000852721\06990566\300_0021.tif
	d:\p2mp\img\0000852721\06990566\300_0022.tif
	d:\p2mp\img\0000852721\06990566\300_0023.tif
	d:\p2mp\img\0000852721\06990566\300_0024.tif
	d:\p2mp\img\0000852721\06990566\300_0025.tif
	d:\p2mp\img\0000852721\06990566\300_0026.tif
	d:\p2mp\img\0000852721\06990566\300_0027.tif
	d:\p2mp\img\0000852721\06990566\300_0028.tif
	d:\p2mp\img\0000852721\06990566\300_0029.tif
	d:\p2mp\img\0000852721\06990566\300_0030.tif

