US007428593B2

127 United States Patent 10) Patent No.: US 7,428,593 B2
’ ’
Rustagi et al. 45) Date of Patent: *Sep. 23, 2008
(54) SYSTEM AND METHOD OF PROCESSING 5,652,832 A 7/1997 Kane et al.
DATA FLOW IN MULTI-CHANNEL, 5,884,284 A * 3/1999 Petersetal.ccouenn. 705/30
MULTI-SERVICE ENVIRONMENT BY 5,956,024 A * 9/1999 Strickland et al. . .. 715/717
DYNAMICALLY ALLOCATING A SOCKET 6,091,735 A 7/2000 Dodson et al.
6,154,776 A 11/2000 Martin
(75) Inventors: Viresh Rustagi, Santa Clara, CA (US); 6,205,208 B1* 3/2001 D.etlefsen etal. 379/93.05
Robert S. French, Sunnyvale, CA (US); 2’515’22; Ei 32881 g:}?‘;l; etal.
Garald H. Banta, Menlo Park, CA (US) 6,381’321 B 4002 Brown of 'al
(73) Assignee: Broadcom Corporation, Irvine, CA 6,460,080 BL* 102002 Shah etal. wooccovserren 709/224
(US) 6,580,725 B1* 6/2003 Phillipsetal. 370/461
6,591,290 Bl 7/2003 Clarisse et al.
(*) Notice: Subject to any disclaimer, the term of this g’zg’gz‘? Ei : 22882 g;ls‘;j[gl etal oo ;?zﬁé?
. f 925, abd
patent is extended or adjusted under 35 6,934,937 BL* 82005 Johnsonetal. 717/129
US.C.154(b) by 216 days. 7,054,943 B1* 52006 Goldszmidt et al. 709/229
hi . bi inal di 7,072,450 B1* 7/2006 Pinardcce.... 379/88.11
Tl s patent 1s subject 10 a terminal dis- 7,200,219 B1* 4/2007 Edwardsetal. 379/265.01
claimer. 2002/0110111 A1* 82002 COULULE ..o.vvvorvverrreenns 370/352
. 2003/0005144 Al 1/2003 Engel et al.
(21) Appl. No.: 11/056,557 2003/0056001 Al 3/2003 Mate et al.
(22) Filed: Feb. 11, 2005
FOREIGN PATENT DOCUMENTS
(65) Prior Publication Data EP 0690376 AY 1/1996
US 2005/0147124 Al Jul. 7, 2005 EP 0794491 A2 9/1997
EP 1174797 A2 1/2002
Related U.S. Application Data Ip 11031129 2/1999
(63) Continuation of application No. 09/565,580, filed on .)
May 4, 2000, now Pat. No. 6,912,576. cited by examiner
(51) Int.CL Primary Examiner—QOanh Duong
GOG6F 15/173 (2006.01) (57) ABSTRACT
(52) US.CL ..o 709/226; 709/229; 709/232;
718/104;379/207.02; 370/252 . . .
. . . ’ ; A method and system for processing a data flow in a multi-
(58) Field 07f0(93/l;;sglﬁ2c ;;0171 lsgj?gzh 379/2 07783/228/222562’ channel, multi-service environment is described. In one
S licati ’ fl % 1’ b h ’ embodiment, a socket is dynamically allocated, the socket
ee application file for complete search history. including a dynamically allocated service. Further, the server
(56) References Cited processes the data flow based upon the type of data being

U.S. PATENT DOCUMENTS

5,400,401 A * 3/1995 Wasilewskietal. 380/212

processed.

HOST SENDS CONTROL PACKET TO PCS

NO
SCS ALLOCATED ?

PCS ALLOCATED NEW SCS

1120

20 Claims, 14 Drawing Sheets

|_— 1105

/——1725

i

PCS NOTIFIES HOST

T

PCS ALLOCATES CHANNEL SOCKET

END

U.S. Patent Sep. 23, 2008 Sheet 1 of 14 US 7,428,593 B2

FIG.1
—102
SYSTEM
ELEMENT
SYSTEM 104
BUS
106 116
BUFFER
BRIDGE [1 'ciopy
L —118
/703 /770 /772 /774
O
SYSTEM
B ~—
____157_25 120
| TDM “: —122
| SIGNALING 14— » TOM
| INTERFACE | INTERFACE
S
L@f ne _N_A_L_) J 124
TDM BUS

US 7,428,593 B2

Sheet 2 of 14

Sep. 23, 2008

U.S. Patent

g

\!%Q l

Z0Z~ 202~
ETRN5)
n 21z nvya Z1Z~ G3LSMIO
(WV¥S) TNEALXT (WVYS)
USOWIN §FLSNTD 517 YOWIN ¥ILSNTD
012,012 01Z 01Z 802 80Z~01Z~01Z~01Z~01Z~
2084 ||| s3ounosay | {0084
Id | 3d | 3d | 3d \Wgrenm| 1 wgom0 avv [\waisato|| 29 |79 | 79 |4
" ssaugay
WILSAS ——T S180d
oy mmwwq WVYS TIYVHS nal k=
81z — 90— 02 — MNT_—912
20 | 30 | 30 | 30 |[208< JLI| [99ad 1 L1 2084 {1 3001 301 | 30 | 30
W315N79 NIYA 3USNTD
012012012012 ~80Z 802-01z2-012-01Z-01Z
(WvyS) (nvys)
NOWIN ¥TLSNTD YOWNIN 83LSNTO
1z 1440d || L1¥0d || z12-
MLSNTD 1504 ||~ 833 ¥31SNTD
z0z— 0zz—~ @ @ z0z-"
G I

U.S. Patent Sep. 23, 2008 Sheet 3 of 14 US 7,428,593 B2

FIG.3

304

302

306~

w10 00

wrt 1000

US 7,428,593 B2

Sheet 4 of 14

Sep. 23, 2008

U.S. Patent

g0 - 90+
9% _
Ve
/ [
[
o@\/ | o@\/ ﬁ omvly
\ \ \
gzv—" } yZHp— zzy—"
\
\ glv
pib—"_
B o1t
vor 206
v old

US 7,428,593 B2

Sheet 5 of 14

Sep. 23, 2008

U.S. Patent

1SOH

O.N..IIIII

cos

uso -
Fmﬁm,
XD Sm SOS \\,@Qm
1SO -

13IN00S ——~—___ " MIVIS FINNIS

GIId

> 016

US 7,428,593 B2

Sheet 6 of 14

Sep. 23, 2008

U.S. Patent

,
uso
~— ~— /
420 909—" +0C 219
—
J S0S Z52
TOHLNOD
LSOH —=
\zz9
Sm\\
9914

US 7,428,593 B2

Sheet 7 of 14

Sep. 23, 2008

U.S. Patent

m;.m\llﬁ NR\IIh QR’# QR\II* IN\/» MQN\I%

9L —

N0/ por—"

w NQN\.\

YAA4
I

-—[00C

0ct

AR

U.S. Patent Sep. 23, 2008 Sheet 8 of 14 US 7,428,593 B2

FIG.8
SOCKET DATA
\
804—~— SOCKET 1
06—~ SOCKET 2
W Fazo
808—~ SOCKET n
810—~— SHARED MEMORY

800/

US 7,428,593 B2

Sheet 9 of 14

Sep. 23, 2008

U.S. Patent

TOHLNOO
1LSOH ==

000

806 —

000

0691

—
906~
Z S0
»06 -
| 05
z06—

US 7,428,593 B2

Sheet 10 of 14

Sep. 23, 2008

U.S. Patent

134908 504
NOLL V93499V
T04LNOD ,
104INOD| || Sos

= HoC
000 m

Q6914

o)
—016
D
016
)
016
o]
016
50
016
)
016
S5 |
016
L_J
(0]
016
L.J

U.S. Patent Sep. 23, 2008 Sheet 11 of 14 US 7,428,593 B2

FIG.10

CHANNEL SOCKET ALLOCATED By PcS 1005

'

DATA FRAME PROCESSED BY SERVICES | _—1015
WITHIN THE CHANNEL SOCKET

l

PROCESSED DATA FRAME OUTPUT TO | _— 1020
APPROPRIATE DEVICE

END

US 7,428,593 B2

Sheet 12 of 14

Sep. 23, 2008

U.S. Patent

ON4

el —" 13X00S TINNVHO S3ILVIO0TIV SOd

1

ot —"] .Nm.DI S3HILON SOd

t

SOS M3IN a3LvaI0TIV SOd

¢ aILvo0TIV SIS

coll—" SId 0L L3AOVd TOYLNOD SANIS LSOH

%

(NI

US 7,428,593 B2

Sheet 13 of 14

Sep. 23, 2008

U.S. Patent

ang

SLIAO0S TINNVYHO OL Vivd3
dALVIIHIIV SLINSNVHL S¥d

]
Gscl - |

Viva S3LvOo3¥O9v Sva

oszi—" !

SYa HIm

TINNVHO SLOINNOO LSOH

S13A00S

GZZ! 7
F |

a

S13IMO0S TINNVHO
SILVYO0TIV LSOH

NOLLYD0T1TY
(SYQ) L3INO0S NOILYOIHIOV
VIvVa MIN SLSINDIFY LSOH

ozz1—"
(g L4VIS)

Gl

.QNN\\
v 1YV.IS

914

U.S. Patent Sep. 23, 2008 Sheet 14 of 14 US 7,428,593 B2

FIG.13

SOCKET SENDS CONTROL MESSAGE VIA | _— 1305
SCS 7O PCS

'

SOCKET REMOVES ALL PREEXISTING Services— 1270

i

PCS COMMUNICATES WITH HOST TO | _— 1315
ASSIGN SOCKET TO DIFFERENT SCS

l

SCS SENDS SERVICE STACK INFORMATION | _— 1320
TO SOCKET

J,

SOCKET ALLOCATES NEW SERVICE STACK| — 1325
AND INFORMS SCS

l

SCS TRANSMITS CONFIGURATION PARAMETERS| — 1330
70 SOCKET AND TRANSMITS START SIGNAL

END

US 7,428,593 B2

1
SYSTEM AND METHOD OF PROCESSING
DATA FLOW IN MULTI-CHANNEL,
MULTI-SERVICE ENVIRONMENT BY
DYNAMICALLY ALLOCATING A SOCKET

CROSS-REFERENCE TO RELATED
APPLICATION

This Patent Application is a continuation of U.S. patent
application Ser. No. 09/565,580, filed on May 4, 2000 now
U.S. Pat. No. 6,912,576, the entire content of which is hereby
expressly incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to processing data and more
specifically to processing a data flow in a multi-channel,
multi-service development environment.

BACKGROUND OF THE INVENTION

Traditionally, Digital Signal Processors (DSPs) have been
used to run single channels, such as, for example, a single
DS0 or time division multiplexing (TDM) slot, that handle
single services, such as modem, vocoder, or packet process-
ing. Multiple services require multiple channels and multiple
DSPs, each running its own small executive program (small
kernal) and application. The executive programs reserve
some area in memory for application code. When applica-
tions need to be switched, these executive programs overlay
this memory with the new application.

Channels may take one of the following forms: one channel
carried on a physical wire or wireless medium between sys-
tems (also referred to as a circuit); timed divisional multi-
plexed (TDM) channels in which signals from several sources
such as telephones and computers are merged into a single
stream of data and separated by a time interval; and frequency
division multiplexed (FDM) channels in which signals from
many sources are transmitted over a single cable by modulat-
ing each signal on a carrier at different frequencies.

Recent advances in processing capacity now allow a single
chip to run multiple channels. With this increase in capacity
has come a desire to run different services simultaneously and
to switch between services.

A current method to implement multiple services or mul-
tiple channels involves writing all control, overlay, and task-
switching code for each service or channel. This requirement
causes additional engineering overhead for development and
debugging of the applications. In addition, not all services
may fit into the memory available to the DSP, and the services
must be swapped in from the host system. This swapping—
overlaying—adds significant complexity to the implementa-
tion of the DSP services. The extra development activity
consumes DSP application development time.

SUMMARY OF THE INVENTION

A method and system for processing a data flow in a multi-
channel, multi-service environment is described. In one
embodiment, a socket is dynamically allocated, the socket
including a dynamically allocated service. Further, the server
processes the data flow based upon the type of data being
processed.

10

15

20

25

30

35

40

45

50

55

60

2
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and
not by way of limitation in the figures of the accompanying
drawings in which like reference numerals refer to similar
elements.

FIG. 1 is a system architecture of one embodiment for a
multi-channel, multi-service system;

FIG. 2 is a block diagram of one embodiment for a pro-
cessing chip of FIG. 1;

FIG. 3 is a block diagram of another embodiment for a
multi-channel, multi-service system;

FIG. 4 is an exemplary diagram of channels within a multi-
channel, multi-service system;

FIG. 5 is a block diagram of one embodiment for a service
control socket (SCS) configuration;

FIG. 6 is an exemplary block diagram for one embodiment
of'a SCS configuration;

FIG. 7 is a block diagram of one embodiment for data
aggregation socket (DAS) configuration;

FIG. 8 is a block diagram of one embodiment for socket
data;

FIG. 94 is a block diagram of one embodiment for a control
aggregation socket (CAS) configuration;

FIG. 95 is another embodiment for a control aggregation
socket configuration;

FIG. 10 is a flow diagram of one embodiment for the
processing of data and information by channels;

FIG. 11 is a flow diagram of one embodiment for setting up
channel sockets;

FIG. 12 is a flow diagram of one embodiment for creating
a data aggregation socket (DAS); and

FIG. 13 is a flow diagram of one embodiment for the
switching of sockets between service control sockets.

DETAILED DESCRIPTION

A method and system for processing a data flow in a multi-
channel, multi-service environment is described. In one
embodiment, a socket is dynamically allocated, the socket
including a dynamically allocated service. Further, the server
processes the data flow based upon the type of data being
processed.

In the following detailed description of the present inven-
tion, numerous specific details are set forth in order to provide
a thorough understanding of the present invention. However,
it will be apparent to one skilled in the art that the present
invention may be practiced without these specific details. In
some instances, well-known structures and devices are shown
in block diagram form, rather than in detail, in order to avoid
obscuring the present invention.

Some portions of the detailed descriptions that follow are
presented in terms of algorithms and symbolic representa-
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

US 7,428,593 B2

3

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the computer
system’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to apparatus for perform-
ing the operations herein. This apparatus may be specially
constructed for the required purposes, or it may comprise a
general purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored in a computer readable
storage medium, such as, but is not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions, and each coupled to a computer sys-
tem bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the required method steps. The required structure for a
variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.

FIG. 1 is a system architecture of one embodiment for a
multi-channel, multi-service system 100. Referring to FIG. 1,
system element 102 is connected via system bus 104 and
bridge 106 to a plurality of processing chips 108, 110, 112,
114. In addition, bridge 106 is connected to buffer memory
116. System element 102 may be another bridge 106 configu-
ration or other suitable component. Bridge 106 is connected
via bus 118 to the processing chips 108-114. In one embodi-
ment, processing chips 108-114 are connected via bus 120 to
time division multiplexing (TDM) interface 122. In alternate
embodiments, chips 108-114 may be connected to a digital
signal 0 (DS0) interface or other applicable interface. In one
embodiment, TDM interface 122 is connected to a number of
modules and ports installed on the TDM bus 124. In addition,
TDM interface 122 may optionally be connected to TDM
signaling interface 126.

TDM is a base-band technology in which individual chan-
nels of data or voice are interleaved into a single stream of bits
(or framed bits) on a communications channel. Each input
channel receives an interleave time segment in order that all
channels equally share the medium that is used for transmis-
sion. If a channel has nothing to send, the slot is still dedicated
to the channel and remains empty.

In one embodiment, an operating system running within
multi-channel, multi-service system 100 supports telecom-
munication and data communication applications. These
applications involve running multiple channels of protocol

15

20

25

40

45

60

65

4

stacks built from multiple services. Multi-channel, multi-
service system 100 enables the dynamic configuration of
services within the embedded telecommunication and data
communication environment. In addition, the operating sys-
tem automatically defines the allocation of resources for the
channels within system 100.

In one embodiment, the operating system running within
multi-channel, multi-service system 100 supports monitoring
of channels in realtime. If a particular service within a chan-
nel is not responding as expected, the host system may
request the operating system to send the state of one or all of
its services to an off-chip application at prespecified events.
For example, after processing every frame worth of data. The
data is collected without affecting the socket’s realtime per-
formance. The oft-chip application may then analyze the
cause of the problem by inspecting the data in non-realtime.

FIG. 2 is a block diagram of one embodiment for a pro-
cessing chip 108. Each processing chip 108 contains clusters
202 and main processor 204. Each cluster 202 contains a
cluster processor 208 and a number of processing engines
(PEs) 210. Main processor 204 is configured to perform all
control code and operations including receiving control mes-
sages from host 102 and allocating channels to the various
clusters 202.

Processing chip 108 also includes a shared static random
access memory (shared SRAM) 206. Shared SRAM 206 may
be accessed directly by all the cluster processors 202 and
main processor 204. An instruction store contained within the
PEs 210 can also access shared SRAM 206. Shared SRAM
206 is used for storing operating system and application code
as well as hosting the data for code running on main processor
204.

Each cluster 202 contains cluster SRAM 212. Cluster
SRAM 212 is responsible for maintaining channel data run-
ning on each individual cluster 202. Cluster SRAM 212
includes 1/0 buffers and programming stacks. The operating
system of system 100 enforces memory protection to prevent
a channel from inadvertently corrupting another channel’s
data or code.

External dynamic random access memory (DRAM) 214
may be used for application data too large to fit on the on-chip
cluster SRAM 212 or shared SRAM 206 and may be used as
a swap area for application code. In one embodiment, appli-
cations may need more data than the on-chip memory may
support. In this case, the data and program for some of the
services may be stored in off-chip memory (for example,
DRAM 214). The program and data is loaded onto the on-
chip memory as the channel’s data processing begins. In this
manner, the service is not aware of where the data and pro-
gram resides on external memory. This is done without affect-
ing the realtime performance of the applications.

Each processing chip 108 includes two line side ports 216
and two system bus ports 218. These ports are used for packet
side data and control transport. In addition, host port 220 is
used to communicate with the host 102 and is accessible only
from main processor 204 and serial boot port that is used to
send the boot stream to the chip.

FIG. 3 is a block diagram of another embodiment for a
portion of a multi-channel, multi-service system 100. Refer-
ring to FIG. 3, service 302 is a self contained set of instruc-
tions that has data input/output, control, and a defined inter-
face. Service 302 performs defined processing upon a certain
amount and a certain format of data. In addition, service 302
emits a certain amount and a certain format of data. In an
alternate embodiment, service 302 may process data in a
bidirectional manner. Service stack 304 is a linked set of
services 302 that provide a larger processing unit. Service

US 7,428,593 B2

S

stack 304 is a unique, ordered collection of services 302, such
as, for example, echo cancellation services, tone detection
services, and video or voice conferencing services. The ser-
vices 302 within the service stack 304 are processed in-order.

Socket 306 is a virtual construct that provides a set of
services 302 in the form of a service stack 304. The operating
system processes services 302 that are encapsulated in socket
306 including connecting the traffic flow. The number of
services 302 is dynamically adjustable and definable such
that the need for multitasking is eliminated. Processing within
socket 306 is data driven. That is, services 302 are invoked by
sockets 306 only after the required data has arrived at socket
306. In one embodiment, applications may build protocol
stacks by installing a service stack 304 into a socket 306.
Services 302, service stacks 304, and sockets 306 are allo-
cated and de-allocated as required by system 100.

FIG. 4 is an exemplary diagram of channel sockets (CSs)
430 (422, 424, 426) within system 100. CSs 430 are special-
ized sockets 306 that direct the flow of information through
the system 100 between two or more devices or end points
402, 404, 406, 408. End points may be, for example, physical
devices. CS 430 is a socket 306 that accepts a service stack
304 and processes channel data. CS 430 connects any line
side slot or bus channel on one end of CS 430 to any other line
side slot or bus channel on the opposite end of CS 430. CS 430
has two main attributes: (1) a defined input/output that is
implied by its function and location, and (2) an application
programming interface (API) as seen by a device attached to
CS 430. CS 430 is defined by external, physical interface
points and provides the ability to process the service stack
304. Information may flow from a physical end point 402 via
connection 418 to CS 424. The information is processed by
services 302 within CS 424 and is transferred via connection
420 to end point 406. The operating system may dynamically
change the flow of information through different CSs 430
depending upon the needs of the end points 402-408. For
example, data may be initially set to flow from end point 404
via connection 410 through CS 422 and via connection 412 to
end point 408. However, if service stack 304 within CS 422 is
incompatible with the data, CS 422 notifies the operating
system to break the flow and redirect the information. The
operating system then redirects the flow to an existing CS 430
with the proper service stack 304 or creates a new CS 430.
Referring to FIG. 4, the operating system may redirect the
flow from end point 404 to end point 408 through connection
414, CS 426, and connection 416.

A CS 430 is defined by the external, physical interface end
points 402, 404, 406, and 408 and the data flowing through the
CS 430. Each end point 402-408 may be different physical
devices or the same physical interface or device. The flow of
information is directed by the manner in which the packet
formats are created. The header information within the pack-
ets indicate the unique end points 402-408 that the informa-
tion is being sent to and whether the information is going in or
out of system 100. For example, CS 422 services may per-
form a conversion of data. The CS 430 mechanism allows a
service stack 304 to be built into the information flow in
which services 302 may direct or process the data as it flows
through the system. For example, if a first service outputs a 40
byte data frame and a second service uses an 80 byte frame, in
one embodiment, the second service waits until the first ser-
vice outputs enough data in order for the second service to
process the data. In an alternate embodiment, the first service
delays sending data to the second service until it accumulates
enough data. Services 302 are independent modules and are
standalone plug-ins. Thus, in one embodiment, services 302

5

20

25

40

45

60

65

6

may be dynamically downloaded into shared SRAM 206 in
real-time to build CSs 430 as required by the data.

Because sockets 306 may be dynamically allocated and
deallocated by the operating system, applications may be
written to access dedicated, single channel processors; how-
ever, the dedicated channels will run on multiple physical
channels. Thus, the CS 430 mechanism provides single chan-
nel programming with multiple channel execution. In addi-
tion, an application may be written to provide flow of infor-
mation between end points 402-408 independent of the
operating system and independent of the type of data being
processed. CS 430 functions, whether they are signal process-
ing functions or packet processing functions, are independent
of'both the operating system and the hardware configuration.
The mechanism also relieves applications of the management
of channels and places the management into the operating
system, thus producing channel independent applications. In
addition, the CS 430 mechanism allows the applications and
services 302 to be platform independent.

FIG. 5 is a block diagram of another embodiment for a
portion of a multi-channel, multi-service system 100. Refer-
ring to FIG. 5, system 100 includes SCS 502 which is con-
nected to a host and to a plurality of CSs 510. Service control
socket (SCS) 502 is a socket 306 containing the control por-
tion of the services 302 for a service stack 304. Each unique
service stack 504 has its own SCS 502. Each SCS 502 con-
trols multiple instances of the same CS 510. Each service 302
within SCS 502 is the control portion for the respective ser-
vice 302 within CS 510. Services 302 in a CS 510 service
stack may receive control messages from that stack’s SCS
502. Each service 302 has a data domain and a control
domain. The data domain is maintained within socket 306 and
the control domain is maintained within SCS 502.

FIG. 6 is a block diagram for another embodiment of a
portion of a multi-channel, multi-service system 100. Refer-
ring to FIG. 6, system 100 includes SCS 601 that receives
control information from a host at 622. Each service 302 has
a data and control component. The control information speci-
fies that control information is to be sent to a particular service
302 within a particular socket 306. In the FIG. 6 example,
service controller 624 controls all information for that unique
service 626, 628, 630 in which service 626, 628, 630 is an
instantiation of the same service 302. SCS 601 contains all the
control instructions for the particular service 626, 628, 630.
Thus, SCS 601 controls all services contained within each
socket 602, 604, and 606. Sockets 602, 604, and 606 each
have the same service stack 304. Control service 624 controls
the services 626, 628 and 630. When a command is received
from the host, the command indicates both the service 302
and the socket 306 to send the control information to. Thus, in
the FIG. 6 embodiment, the information received from the
host indicates that a unique service 626 is to be accessed and
that socket 602 is to be accessed. Thus, SCS 601 sends the
information via connection 608 to service 626 within socket
602.

FIG. 7 is a block diagram of one embodiment for data
aggregation socket (DAS) 730 configuration. Referring to
FIG. 7, DAS 730 is connected to a number of sockets 702,
704, 706. Each socket 702, 704, 706 receives frames of data
through input 708, 710, 712 respectively. Each socket 702,
704,706 sends data to DAS 730 through connection 720, 722,
724 respectively. Services 302 within DAS 730 aggregate and
combine the data and transmit the data from DAS 730 via
connection 726 to sockets 702, 704, 706. Each socket 702,
704, 706 outputs data through connections 714, 716, 718,
respectively. DAS 730 collects data from multiple sockets
and processes the aggregated data. For example, DAS 730

US 7,428,593 B2

7

may be used to process telephone conference calls and other
applications that require data aggregation.

In one embodiment, a host sends a request to allocate a new
DAS 730 specifying a maximum number of inputs, the spe-
cific services to run, and frame size. For example, the host
may send a request to allocate DAS 730 for a teleconference.
Prior to the initialization of DAS 730, a host application also
allocates appropriate sockets 510 as described above. Sockets
702, 704, 706 all connect specific data input to the telecon-
ferencing 730. When both the DAS 730 and sockets 702, 704,
706 are allocated, the host connects sockets 702, 704, 706
with DAS 730. In one embodiment, the host application
switches pointers within the software to connect to DAS 730.
Once a frame of data is available, DAS 730 receives the
information and processes the information through the ser-
vices within DAS 730. DAS 730 outputs the aggregated data
to each of the sockets 702, 704, 706. DAS 730 may be allo-
cated and de-allocated dynamically. The connection between
DAS 730 and individual sockets 702, 704, 706 may be estab-
lished or disconnected dynamically.

FIG. 8 is a block diagram of one embodiment for socket
data 800 used by multi-channel, multi-service system 100.
Socket data 800 includes from 1 (804) to n (808) sockets 820.
In addition, socket data 800 includes a shared memory 810.
Socket data 800 is used to store sockets 306 as they are
dynamically created, initialized, and used. In one embodi-
ment, socket data 800 resides in cluster memory 212. In
alternate embodiments, socket data 800 may reside in shared
SRAM 206, or external DRAM 214. DRAM 214 is used
when socket data 800 will not fit in cluster memory 212. In
one embodiment, socket data 800 may reside in DRAM 214
and is moved to cluster memory 212 as needed.

In one embodiment, each service 302 is assigned a type.
When data is run through the socket 306, the control infor-
mation for the data may be configured to be processed only by
a given type of service 302, for example, a type 2 service 302.
In addition, service 302 can instruct a socket 306 to not run or
“unplug” certain services 302 further along in the socket 306
just for this frame of data. After the frame of data is processed,
sockets 306 are “plugged” in for subsequent frames of data.

In addition, during the operation of a socket 306, it is
sometimes necessary for one service 302 to communicate
with another service 302 in the service stack 304. Services
302 may communicate with one another using a socket wide
shared memory 810. Services 302 may pass control informa-
tion and data to other services 302 within a socket 306 via
shared memory 810. For example, if a dial tone detect is found
in an initial socket service, the socket 306 should not run the
voice decode service. Thus, the initial tone detect service may
place the information that the tone has been detected in shared
memory 810. When a subsequent service 302 is initialized or
run, the service 302 reads the shared memory 810 and deter-
mines that a tone detect has been found and the services
bypassed. Shared memory 810 is allocated at the time a
socket 306 is allocated. A pointer to shared memory 810 is
passed to the initializing routine of each service 302. Service
302 uses this pointer as necessary to communicate with other
services 302. The size of shared memory 810 is the same for
all sockets 306 and is specified within configuration setup.

FIG.9a is a block diagram of one embodiment for a control
aggregation socket (CAS) 908 configuration. Referring to
FIG. 9a,CAS 908 collects all control information coming out
of control sockets and sends aggregate information to a host.
In addition, CAS 908 collects the control information coming
into the system and distributes the aggregate control informa-
tion to the appropriate control socket, either SCS 902, 904, or
platform control socket (PCS)906. In one embodiment, users

10

15

20

25

30

35

40

45

50

55

60

65

8

may install or modify services 302 within CAS 908. CAS 908
receives messages from host control and passes the messages
to the appropriate service within the appropriate socket 306.
CAS 908 splits the host control to the appropriate socket 306
depending on the address of the control information. In one
embodiment, the address hierarchy is the subsystem, board,
chip, socket, and service. CAS 908 sends the control infor-
mation to the appropriate service 302 and socket 306 indi-
cated by the host.

PCS 906 is a specialized socket that runs on the main
processor when the system boots. It is the only socket 306 that
has knowledge of system wide resources. PCS 906 manages
all resources, including allocating the SCSs 902, 904 to clus-
ters 202, allocating TDM time slots, and allocating bus chan-
nels. Applications may not allocate or deallocate any services
within PCS 906. Specifically, PCS 906 boots clusters 202 and
chips 108, loads and unloads services 302, creates and
destroys SCSs 902,904, sends a heartbeat to the host 102, and
detects if a cluster 202 is inoperative.

PCS 906 monitors the resources on the chip including
instruction memory available. As the traffic pattern of
acquired services changes, the operating system may unload
and load services as required. This is done without affecting
the channels that are running on the system.

FIG. 95 is another embodiment for a control aggregation
socket 908 configuration. CAS 908 is connected to both PCS
906 and a number of SCSs 902, 904. Each SCS 902, 904 is
connected to a number of channel sockets 910.

FIG. 10 is a flow diagram of one embodiment for the
processing of data and information by channel sockets 510.
Initially at processing block 1005, PCS 906 dynamically
allocates channel socket 510 at the request of host 102. The
creation of a channel socket 510 is described in reference to
FIG. 11 below.

Once channel socket 510 is allocated, data is received by
channel socket 510. In one embodiment, channel socket 510
may receive control information for the processing of the data
from SCS 902. Data may be received from any physical
device interface connected to system 100. The data is pro-
cessed by services 602 within a socket 306. The operating
system within system 100 may change the flow of informa-
tion through different channel sockets 510 depending on the
need of the physical devices attached to the channel sockets
510. If a service stack 304 within channel socket 510 is
incompatible with the incoming data, channel socket 510
notifies the operating system to change the flow of informa-
tion. Operating system then redirects the flow to another
existing channel socket 510 with the proper service stacks
304 or creates a new channel socket 510.

At processing block 1015, the data frame is processed by
services 302 within channel socket 510. In one embodiment,
services 302 are dynamically allocated when the first frame of
data is received by channel socket 510. In an alternate
embodiment, services 302 may be allocated at the time chan-
nel socket 510 is allocated. Services 302 process the data
depending on the requirements of the data. For example,
service 302 may be dynamically allocated to process tele-
phone voice data. In one embodiment, data may be aggre-
gated using a data aggregation socket 730 to combine the
data. The data aggregation socket 730 may be utilized in a
telecommunications teleconferencing application.

At processing block 1020, the processed data frames are
output to the appropriate device interfaces. Processing blocks
1015 and 1020 are executed as long as data frames are sup-
plied. After all data frames have been processed, system 100
may dynamically deallocate the channel socket 510. System
100 dynamically allocates and deallocates services 302 and

US 7,428,593 B2

9

sockets 306 as required by system 100 in order to fully take
advantage of the limited physical channels within system
100. Thus, system 100 operates as a multi-channel, multi-
service platform within a single channel development envi-
ronment.

FIG. 11 is a flow diagram of one embodiment for setting up
channel sockets 510. Initially at processing block 1105, host
102 sends control packet to PCS 906. The control packet
indicates the type of channel socket 510 that host 102 needs to
allocate to process a given data flow. For example, host 102
may need to allocate a line-to-packet, packet-to-packet, or
line-to-line control packet. The packet contains a top to bot-
tom order list of service 302 names to be allocated into socket
306 to create a service stack 304. PCS 906 determines if the
required services 302 have been loaded and if the required
services 302 have been registered with the operating system.
If any of the services 302 are not available, PCS 906 informs
host 102. In addition, PCS 906 determines if resources are
available to allocate the required sockets 306. If resources are
notavailable, PCS 906 informs the host 102 that the operating
system lacks sufficient resources to allocate a socket.

Atprocessing block 1120, PCS 906 determines if any SCSs
902, 906 with the same service stack 304 already exist. If the
SCSs 902, 904 already exist, processing continues at process-
ing block 1130. If the SCS does not exist, processing contin-
ues at processing block 1125.

Atprocessing block 1125, PCS 906 allocates the appropri-
ate SCS for the service configuration. In one embodiment,
PCS 906 loads the appropriate control services into shared
SRAM in the order required by the service stack.

At processing block 1130, after PCS 906 sets up the new
SCS 902, the PCS 906 notifies the host application that the
SCS is set up. PCS then sets up CS. SCS then completes the
channel service socket allocation by sending socket param-
eters to the socket. Such parameters may include, for
example, tail length of echo cancellation (EC).

At processing block 1135, CS 510 initializes services 302
by calling their initialization functions. In an alternate
embodiment, services 302 may be allocated at the time the
first data frame is received by CS 510. When host 102 is ready
to begin processing data through a given socket 306, host 102
instructs SCS 502 to start CS 510. This initializes the data
handling of the socket 510. SCS 502 starts CS 510 and
informs host 102 that CS 510 is configured and running.

FIG. 12 is a flow diagram of one embodiment for creating
a data aggregation socket (DAS) 730. Prior to creation of
DAS 730, host 102 allocates the appropriate channel sockets
510 for processing the data at processing block 1220. The
allocation of channel sockets 510 is as described above in
reference to FIG. 11.

Independent of the channel socket 510 allocation, host 102
also requests that the DAS 730 be allocated. At processing
block 1215, the host sends a request to allocate a new DAS
730 with a maximum number of inputs, the specific services
to be run, and the frame size. (The frame size is the number of
samples on each of the connected inputs.) When both DAS
730 and some number of channel sockets 510 are allocated,
processing continues at processing block 1225. At processing
block 1225, the host connects channel sockets 510 with the
DAS.

Atprocessing block 1230, DAS 730 aggregates the data by
invoking service handlers within DAS 730 once a frame’s
worth of data is available on each of the connected inputs
from the channel sockets 510. DAS 730 aggregates the data
and outputs the specific data. The data is aggregated by server
302 within a socket 510. In one embodiment, aggregation is
defined by a customer or user prior to fabrication.

20

25

30

40

45

50

60

65

10

At processing block 1235, the output of the last DAS 730
service 302 broadcasts the data to the inputs of all connected
channel sockets 510. The aggregated data is processed by the
individual channel sockets 510. DAS 730 may be created or
destroyed dynamically and the connection between the DAS
730 and channel sockets 510 may be established dynamically.

FIG. 13 is a flow diagram of one embodiment for the
switching of sockets 306 between SCSs 502. When a socket
306 or a service 302 within a socket detects that the current
channel socket 510 needs to be handled by another service
stack 304, the operating system must switch to a different
service stack 304. For example, if a voice service stack detects
that a call needs to be switched to a fax service stack, a new
service stack 304 must be used. Initially at processing block
1305, service 302 sends a control message to its SCS 502 that
is forwarded to the PCS 906. The message may contain any
configuration information that the new service stack 304
might need to receive and the message contains the informa-
tion that a new stack 304 must be used.

At processing block 1310, channel socket 510 removes or
de-allocates all its preexisting services. At processing block
1315, PCS 906 communicates with host 102 to assign a
socket 306 to a different SCS 502. PCS 906 assigns a socket
306 to a different SCS 502 based on the new service stack 304.
If the service stack 304 does not exist, PCS 906 may create a
new SCS 502 based on the new service stack 304 require-
ments.

At processing block 1320, SCS 502 sends the service stack
information to the socket 306. At processing block 1325,
socket 306 allocates the new service stack 304 and informs
SCS 502 that the stack 304 is available for processing.

At processing block 1330, SCS 502 transmits configura-
tion parameters and a start signal to the new socket 306.

Thus, channel sockets 510 may be dynamically created as
required. SCS 502 controls the physical or hardware channel
while the channel sockets 510 process the data. Resource
management for determining the cost of n channel sockets
510 and determining the availability resources to see if n
channel sockets 510 may be run may be calculated by the PCS
906 or by more remote resources with the knowledge of the
resources within system 100. The operating system, thus,
may use a single hardware channel for the processing of
multiple channel data types.

In one embodiment there are three types of channel sockets
510 utilized: line-to-packet, packet-to-packet, and line-to-
line. Line-to-packet sockets are always connected to the line
side at one end of the packet and the packet side at the other
end of the channel. Some voice and modem stacks use line-
to-packet sockets. These sockets process a frame’s worth of
data. The frame size is specified in terms of a number of bytes
in the line side. One of the services will be responsible for
setting the frame size. For example, the codes are expected to
set the frame size in the case of a voice processing. The frame
size may be changed at any time during the life of the socket.
The socket reads a frame’s worth of data. The data received
from the line side may be in different format from the format
expected by the services. In this case, the operating system
performs the appropriate conversion of the data. After the data
conversion, the socket calls the data processing functions of
each service in order. The arguments to these functions are the
pointers to the data in the shared memory and the data length
in bytes.

After the data processing functions of all the services are
called, the socket expects a packet of input data from the
packet network. If a packet has arrived, the socket converts
the cell base data to flat data and calls the data processing
functions of all the services. The arguments to these functions

US 7,428,593 B2

11

are the pointers to the data and the data length in bytes. If,
however, no packets have arrived, the socket calls these func-
tions with the data length set to zero. This allows a socket to
send meaningful data on the line even if no packet is available
at the time. Both the voice stack and modem stack require this
mechanism.

Packet-to-packet sockets are always connected to the
packet side at both ends of the socket. However, the packet
length may be different in each direction of data flow. Both
ends of the sockets process packet size data and processing
occurs whenever data appears on either end.

Line-to-line sockets are connected to the line side at both
ends of the socket. The socket processes a frame’s worth of
data in both directions of data flow. The frame size in each
direction is the same. Line-to-line sockets may perform stan-
dard line side coding and decoding transformations on the
data on both ends. The conversion setting on both ends does
not need to be the same.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader sprit and scope of the invention as set forth
in the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

The invention claimed is:
1. A method of processing data flow in a multi-channel,
multi-service environment, the method comprising:
generating a control packet to control allocation of a socket
based upon a type of processing required on data,
wherein the socket comprises a plurality of services,
each service being a self contained set of instructions
including a defined interface;
allocating the socket responsive to the control packet; and
processing the data using one or more of the plurality of
services.
2. The method of claim 1 further comprising:
de-allocating the socket once all the data is processed.
3. The method of claim 1 wherein the socket is allocated
after a first frame of data has been received.
4. The method of claim 1 wherein allocating the socket
further comprises:
determining if a socket for a data type already exists;
if the socket does not exist, allocating a service control
socket for the data type; and
notifying a host that the service control socket has been
created.
5. The method of claim 4 further comprising determining
the availability of resources for the socket.
6. The method of claim 4 further comprising receiving the
control packet from a host.
7. The method of claim 1 wherein the control packet
includes a top to bottom order list of services.
8. The method of claim 4 wherein notifying further com-
prises sending socket parameters to the host.
9. The method of claim 4 wherein allocating the socket
further comprises initializing the plurality of services during
allocating of the socket when a first data frame is received.

20

25

30

35

40

45

12

10. The method of claim 1 further comprising:

allocating at least one channel socket in accordance with
the control packet;

allocating a data aggregation socket in accordance with the
control packet;

aggregating data in response to receiving the data from the
at least one channel socket; and

outputting the aggregated data to the at least one channel
socket.

11. A system for processing data flow in a multi-channel,

multi-service environment, the system comprising:

a host processor for determining a type of processing
required on data and generating a control packet to con-
trol allocation of a socket and at least one service
included in the socket according to the type of process-
ing required on data, wherein the socket comprises a
plurality of dynamically allocated services in the form of
a service stack and each service is a self contained set of
instructions; and

a platform control socket for allocating the allocated ser-
vices for processing the data flow in response to the
generated control packet.

12. The system of claim 11 wherein the socket is further

configured to transfer the processed data to a device interface.

13. The system of claim 11 wherein the platform control
socket is further configured to de-allocate the socket once all
the data is processed.

14. The system of claim 11 wherein the socket is allocated
after a first frame of data has been received.

15. The system of claim 11 wherein the platform control
socket is further configured to:

determine if a channel socket for a data type already exists;

allocate a service control socket for the data type if the
channel socket does not exist; and

notify a host that the service control socket has been cre-
ated.

16. The system of claim 11 wherein the control packet is
selected from the group comprising line-to-packet control
packet, packet-to-packet control packet, and line-to-line con-
trol packet.

17. The system of claim 15 wherein the platform control
socket is further configured to send socket parameters to the
socket and configured to initialize the plurality of services.

18. A system for processing data flow comprising:

a host processor for generating a control packet for con-
trolling allocation of a socket and a service included in
the socket based upon a type of processing required on
data, wherein the socket comprises a plurality of
dynamically allocated services in the form of a service
stack and each service is a self contained set of instruc-
tions;

a main processor coupled to the host processor for allocat-
ing the socket based on the generated control packet; and

means for processing the data by the dynamically allocated
services.

19. The system of claim 18 wherein the socket is further

configured to transfer the processed data to a device interface.

20. The system of claim 18 further comprising means for
de-allocating the socket once all the data is processed.

#* #* #* #* #*

	Tiffs to PDF

