A General Method for Compiling Event-Driven Simulations

Robert S. French, Monica S. Lam, Jeremy R. Levitt, Kunle Olukotun
Computer Systems Laboratory
Stanford University, CA 94305-4055

Abstract—We present a new approach to event-driven simu- need for a run-time event queue and its associated overhead. We re-
lation that does not use a centralized run-time event queue, yet place the event queue with inexpensive run-time tests where necessary.
is capable of handling arbitrary models, including those with For the models we have tested, these run-time tests incur significantly
unclocked feedback and nonunit delay. The elimination of the less overhead than a run-time event queue.
event queue significantly reduces run-time overhead, resulting in We represent the event-driven behavior witheaent graph, whose
faster simulation. We have implemented our algorithm in a pro- vertices represent events in the simulation and whose edges represent
totype Verilog simulator called VeriSUIF. Using this simulator we the causal relationships between the events. We apply the general
demonstrate improved performance vs. a commercial simulator technique opartial evaluation to schedule the events as well as pos-
on a small set of programs. sible using statically available information. Specifically, the compiler

tries to approximate the dynamic simulation process by keeping track
of all the available static information that affects the contents of the
. Introduction run-time event queue in a dynamic simulation. This general method

Modern digital system designrelies heavily on simulation to reduc%an be applied uniformly to all models, unlike previous approaches

the number of design errors and to improve system efficiency. | uchas LECSIM [4], TORTLE [5] and [6].

; N L ; f To test our algorithm, we have implemented a prototype simulator,
large system d_eS|gns S0 much time is spent in S|mylat|on that it h% lled VeriSUIF, using the SUIF (Stanford University Intermediate
become a design bottleneck. Event-driven simulation and leveliz

. : . h - . ; ormat) compiler system [7]. We chose Verilog mainly because it is
;cr)énfdlr?gni:;nlljlsaetéjoirr: 3{gitt;7c;)g?éln$réz\gvignSImulatlon techniques tha relatively simple language to implement. The VeriSUIF simulator
In event-driven simulation, events are managed dynamically pl particularly useful for long-running regression tests because it pro-

. . f ces a faster simulation than other techniques. However, our current
ﬁgx?f)/ﬁi?t-sgc :rgu(lﬁlrv (;Lh;m&g‘tggvggéiﬁﬁgra%ebn&grs'vﬁgk?%hn%duﬂ'gﬂ plementation is unsuitable for other phases of the design process
Y y ecause it does not support interactive debugging.

asynchronous models with arbitrary timing delays. The disadvanta € The remainder of the paper is organized as follows. First we give

of E\g\a/gfi_zd ég’ig;’ﬂ:?ggg ésl éoﬁzlimﬂllztt'gg Eg/fgrt?: ng(taénti alto prad Prief overview of Verilog and describe the features of Verilog that
P g p Prve support. Then we describe the event graph representation which

vide much higher simulation performance than event-driven smulatc;k}l derlies our method. Next we describe our mathematical model of

g(radC:rlijr?g ;hneg ; r'ggg; ;(tair:guecvgﬁ]; sﬂE ﬂzj]n 'E'rrﬁii ?: S;hneeagya:\?gﬂgtﬁ%w gditional eve nt-driven simulatipn and our stati_c simulation technique.
o 3 inally, we discuss some optimizations, experimental results, and our
components once each clock cycle in an order that ensures all input nclusions
to a component have their latest value by the time the component)
executed. The main disadvantage of levelized compiled simulation
techniques is that they are not general. Most levelized compiled logic
simulators cannot simulate models with arbitrary delays (RAVEL [3]
is a notable exception). Furthermore, these techniques will not work All Verilog programs are composed afodules. These modules
on asynchronous models or models with unclocked feedback. In pragtay be instantiated inside of other modules to create a hierarchy that
tice, even though most digital systems are synchronous, asynchronaapresentsthe structure of the hardware system. Modules containthree
chip interfaces are common. types of concurrent process statememiiial blocks,always blocks,

In this paper we present a general method for compiling evenand continuous assignments. Initial blocks are executed once at the
driven models calledtatic simulation that combines the generality beginning of the simulation, while always blocks are executed repeat-
of event-driven simulations and the efficiency of the levelized simuedly. Initial and always blocks consist of statements that are executed
lation approach. Like event-driven simulation, our technique appliesequentially, and each can wait on a signal to change valuewsirg
to all general models, including both synchronous and asynchronoas @statements. A continuous assignment is an assignment to a wire
designs. The only restriction is that any specified delays in the sinwhose left hand side continuously reflects the current state of the vari-
ulation must be known constants at compile time. For efficiency, owables on the right hand side. A Verilog simulator simulates a model
technique schedules the events at compile time, thus eliminating teequentially by removing events from an event queue, executing the
- . events, and placing new events on the queue as they become activated.
This research was supported in part by ARPA contract DABT63-94-C-0054. VeriSUIF supports a subset of Verilog. We do not support tasks,

functions, fork/join, or the disable statement. However, we do not
foresee any difficulty in extending our system to handle these features.

II. A Brief Overview of Verilog

lll. Event Graph Representation @

We represent a model using event graph. Event graphs provide
a representation for the static simulation algorithm to work on, and 1
transformations on event graphs can be used to improve simulation
performance.

An event graph partitions the model inwents, represented by
vertices, and uses directed edges to represent relationships between
events. We define an event to be the largest unit of a program that will
execute atomically during simulation, which corresponds to the code (b)
that would be executed during one step of an event-driven simulation.
The semantics of the original language determines precisely how the
boundaries between events are determined from the original source.
In Verilog, events have boundaries at the start and finish of always and
initial blocks, at explicit delays, and at statements that wait on signals
(such ag@andwai t). Each vertex has associated with it executable
code from the Verilog program.

An edge represents a causal relationship between one event and
another. Edges can take two fornsensitizing andtriggering. Event
v1 sensitizes a following event whenever they are separated by an
@or wai t statement. The execution of eventmakesv, sensitive;
vz can then be triggered by other events.

Triggering actions cause events to be scheduled for execution.

nodul e exanpl e();

reg clk;

initial clk=0;

always begin clk = "clk; #1; end
always @clk) $display("clk");
endnodul e

#1

There are three kinds of trigger actions: control flow, data flow, and
delays.v; can triggern:

Figure 1: (a) a Verilog program and (b) its event graph. Trigger edges
if program control flows fromv; to v2 whenever a boolean ex- are solid, sensitizing edges are dashed. The start event is shaded, and

pressiorb evaluates to true after executing

if the execution ofv; changes the value of an expression

awaited byvs, .

or if the delay statemertd separates; andv,. .

Note that not all control flow is represented by control flow edges.
Only control flow that crosses an event boundary is represented in this
way. All other control flow is contained within a single event.

A Verilog program is represented by an event gragh = .
<V7 vo, No, By By, Ez, Ed>, where

V' is the set of events,
vo € V is the start event, °
No C V is the set of initially sensitive events,

E, C V x V represents the sensitizing edges,

E, CV xV x B, whereB is the set of boolean expressions,
represents possible triggering actions due to control flow, .

E, C V xV x X,whereX is the set of expressions, represents
possible triggering actions due to change of expression values,
and

Eqs C V xV x W, whereW is the set of whole numbers,

. ! - A We defines’ =
represents possible triggering actions due to delay statementsyhere

the initially sensitive events have thick edges.

N C V is the set of sensitive events,
R C V is the set of events ready to be executed,

D C V x Wisthe setof allv, d) such that event hasd time
steps left before it can execute,

M is the memory store that maps each variable to its current
value.

We assume the existence of the following operations:

OneOfR) deterministically chooses an event from the set of
ready event#:.

Exedqv, M) applies the code associated with evetd the mem-
ory store} and returns anew memory store. It may also produce
side effects such as generating output.

Eval(b, M) evaluates the boolean expression using the memory
storeM and returnSRUE Or FALSE.

Chgdv, z, M) indicates if the execution of eventwith initial
memory storel/ changes the value of expression

Next({N,R,D,M),G) by (N',R', D', M"),

. é_n exarlnple of an event graph for a small Verilog program is showfirype | Transition) This represents the execution of an event in the
in Figure 1.

IV. Dynamic Simulation

Before we describe our compiler algorithm, we first formally de-
scribe how we model the traditional dynamic simulation process. Dur-
ing simulation, the state of the computationis captured by a quadruple
s =(N,R,D, M), where

current simulation time step:

if R#0,then
Letv = OneOfR) in

M' = Exedv, M)
N = N—{v}u{v'|{v,v") € E,}
R = R-{v}

U{[{v,v",b) € Ey A Evallb, M')}
u{v| {v,v’,2) € B,

Av' €N

AChgdv, z, M)}

D' = DuU{{ d|{v,v',d) € Eq}

(Type Il Transition) This represents incrementing the simulation

time to the next time during which an event can occur.
if R=0andD # 0, then

Let
do = min d,
{v,dyeD
A = {{v,d)|{v,d) € DAd=do}
in
M = M
N = N
R = {v|{v,d) € A}
D' = {{v,d)|{v,d+ do) € (D — A)}

(Type Ill Transition) This represents the end of simulation:

if R=0andD = 0, then
s’ = L, denoting no next state.

Thedynamic simulation of an event graply is a sequence of states
S0, 81, - .

., L, where

E1l clk =0

forever
E2 clk = "clk
E3 $di spl ay("cl k")
time = tine+l
E2 clk = "clk
E3 $di spl ay("cl k")

time = tinme+l
end

In an event-driven simulator this example would cause two events to
be scheduled for each time step. Our approach completely eliminates
all ofthe overhead; there is no run-time event queue and no conditional
tests are performed at run time. The generated code is what one expects
of a cycle-based compiled-code simulator[2]; however, our technique
does not require special treatment of clock signals and is thus more
general.

The above example shows how variable values can be tracked at
compile time. In general, not all variables have known values at
compile time, and even if they do, the compiler cannot afford to track
all of them. For example, it is intractable to record all the values
generated by an increment to an initially known value within a loop.
Our compiler only tracks values due to assignments of constants and
simple boolean expressions. Without knowing the exact values, the
compiler may not be able to determine if an event will definitely
execute. For these cases, the compiler generates run-time tests to
ensure that the simulation is correct.

We now discuss our static simulation technique in more detail.

A. Static Smulation Sate
The compiler runs through a static simulation of the program at

compile time. A static simulation stafe= (N, R, D, M) captures a

conservative approximation of the corresponding dynamic simulation
o so = (No, {vo}, {}, Mo), whereMy represents the initial mem- states = (N, R, D, M) as follows:

ory store that maps every variable to an appropriate initial value
(for Verilog, all variables are initially). .

o s;iy1 = Nexi(s;, G).

V. Static Simulation

Manipulating the event queue is a considerable source of run-time
overhead. Our approach to reducing this overhead is to have the
compiler perform as much of the simulation as possible at compile
time and completely eliminate the run-time event queue. We do this e
by collecting information about which evertmuld be executed at any
given point during the simulation and generating code for those events
guarded by run-time tests. When possible, we track variable values
during compilation so that more decisions about whether an event will
execute can be made at compile time instead of run time. .

As an example, consider Figure 1. At the start of simulation,
the compiler finds the initial event E1 in the event graph and emits
the corresponding code. On analyzing the code itself, the compiler
determines that the value of k is set to 0. Following the trigger

N C V x {mMar,MusT} contains all events that may or must
be sensitizedy(€ N = (v,m) € N and(v,MUST) € N =

v € N). An event can not be paired withiay and MUST
simultaneously.

R C V x {mMAY,MusT} contains all events that may or must
be ready to be executed currently € R = (v, m) € R and

(v,MUST) € R = v € R). An event can not be paired with
MAY andMusT simultaneously.

D C V xW x{Mar, MUST} contains all events that may or must
be waiting to be executed in a future simulation tine, ¢f) €

D = (v,d,m) € Dand{v,d,MUST) € D = (v,d) € D). An
event can not be paired withay andMusT simultaneously.

M is the memory store that maps each variable to its current
value. If we do not know the value of a variable at compile time,
it maps toL. (For each mapping va# val in M such that val

1,var—valisinM.)

edge from the start event to E2, the compiler emits code for E2 and We modify the functions from the dynamic simulation as follows:

similarly notes that the value @fl k is changedto 1. The change of

cl k triggers E3, so the compiler emits the code for E3, and notes that ®
E3 remains sensitive. At this point, the only possible transition to take
corresponds to the delay edge from E2 back to itself. The compiler
generates code to increment the time. It then repeats this same serie8
with thecl k value initially set to 1, and arrives at the same state it
was in after E1 executed: E2 is ready to executedndis 0. The
compiler simply wraps a loop around that section of code. Asthere are
no other events waiting to be executed, the compilation is complete.
The final code is:

OneOf R) deterministically chooses a tup(e, m) from the set
of ready events?.

Exedv, m, M) applies the code associated with everb the
memory storé and returns anew memory storesif= MUST,
any variable written by can be stored i if it is known to
be a constant at the end of subject to the restrictions outlined
earlier. Otherwise, any variable written bymust map tal in
M.

e Eval(b, M) evaluates the boolean expression using the memory in
storeM and returnsusT (TRUE), MAY (some variable ih maps

i — _
to L in M), or MUST NOT (FALSE). Moo= M
- — N = N
. Chgo(v,x,M)lwdicates if the execution of eventwith initial 7 _ « (o, d,m) € A}
memory storel! changes the value of expressioand returns _, - Uy TN, € T .
MUST (TRUE), MAY (some variable inc maps toL in M) or D = {{v,d,m)|{v,d+do,m) € (D—A)}

MUST NOT (FALSE).

We define then operator fomAY , MUST, andMusT NOT as follows:
P (Type Ill Transition) This represents the end of simulation:

if R =0 andD = 0, then

MUST NOT ~ MAY MUST 3 =1
MUST NOT | MUST NOT MUSTNOT MUST NOT
MAY MUST NOT ~ MAY MAY The static simulation of an event grapld? is a sequence of states,
MUST MUST NOT ~ MAY MUST S0, 51, .., L, where

® 50 = <N07 {U0}7 {}7 M0>’ and

We define a function Mergé1, 52), wheresS; and.Sz are sets of 5.1 = Next(s G

tuples (v,m). We assume the existence of a similar function for ¢ S+1= Nexi(s, G).
(v,d, m).

B. Code Generation

MerggS1, S2) = Si1US» When an event is chosen via th©neOf function during a type |
transition, the compiler emits the code corresponding to that event. To
—{{v,;m)| (v,m) € S1U 52 ensurethat the code associated withsa event is executed only when
A(m = MUST NOT the dynamic conditions are right, the code is predicated by a condition
Vom = MAY that is evaluated at run time. The compiler introduces a run-time
A{v,MUST) € 51U S2)} boolean variable for each vertex in the event graph that is maintained
. . . _throughout the program execution such that it reflects whether the
Finally, we extend the state transition function Next to stati¢orresponding event is sensitized. Likewise, for each static simulation
states. The definition oNext ensures that the set of sensitizedstate a trigger variable is introduced to indicate if the event to be
events, currently waiting events and delayed events are a superggecuted during that state has been triggered. Code is generated to set
of the corresponding event sets in dynamic simulation. We defingr reset these variables after each event. When a type |l transition is
5 = Next((N, R, D, M),G) by (N, R, D', M), where taken, code can be emitted to increment the global simulation clock.
We observe that the naive static simulation described above may
(Type | Transition) This represents the execution of an event in theyenerate an infinite list of states on some event graphs. This may

current simulation time step: happen under two circumstances:
E;:L(f &)tle%neotﬁ) in 1. The static simulation may never reach a state whose set of ready
' eventsR is empty. The algorithm described so far could keep
i Exedv, m, 77) taking type | _trans_itior_ws fo_rever. This will occur, for example,
—, 7) when simulating circuits with unclocked feedback.
N = Mergg N — {{v,m) if m = MUST},
{(v', m)|(v,v') € En}) 2. Similarly, the static simulation may never reach a state whose
— — delayed event® is empty. This occurs in synchronous designs
R = Mergg R — {(v, m)}, as the clock signals change continuously until some dynamic

{{(v',m"] {v,v',b) € E condition occurs (see Figure 1).

Am’ = (m AEvalb, M’ o _
m' = (m valb, M)} We use the general method of finding fixed points to solve both of

U{{e,m")| (v,v',2) € Ex these problems. The technique is based on the observation that the set
A, m'y e N of possible static simulation states is finite.
Am" = (m A’ o
AChgdv, », M))}) Theorem 1 The number of possible static simulation states for any

-, _ event graph G isfinite.
D = Merge D, {(v',d,m)|(v, v, d) € Ea})
Proof: For a givenG = (V,vo, No, Ey, Ey, Ez, Eg), the setsV
(Type Il Transition) This represents incrementing the simulationand £, are finite. The following relations must holdN| < |V,

time to the next time during which an event can occur. |R| < |V|, and|D| < |E4| - dm whered,, = maX., ./ aye s, d.
if R =0andD # 0, then The latter equation is derived by observing that for all delayed events
Let (v',d',m'"y € D triggered by edgév,v’,d), d’ < d. (Thatis, the
remaining time to wait cannot be greater than the original delay in
do = < dmir;eﬁd’ the program.) Thus there are only a finite number of possiblé?,

andD sets. As discussed earlier, we limit the possible valug&/in

A {{v,d,m)|{v,d,m) € DAd=do} to constants that appear in the program and unary operators on these

constants. Thus there are a finite number of possiblsets, and a VII. Preliminary Experimental Results

finite number of ibl ic simulation
te number of possible static simulation states We used six benchmarks to test our implementation. Five of these

. . . . are from Coumeri and Thomas [8]. This suite consists of small bench-

Our compiler algorithm s as follows. Whenever the compiler geng, 5 s that vary in hierarchy depth, partitioning, and operators used.
erates a new sta, it compares; with all the previously generated o onchmarks include a series of test vectors and the vectors are
states. We are guaranteed by Theorem 1 that either the simulation wy{ll, up to 1,000,000 times to produce measurable run times. The
eventually terminate or we will find two matching states. If there is Ng, s counter benchmarkis particularly interesting becauseit contains
maEch, the static simulation proceeds as discussed above. cherw'ﬁﬁclocked feedback. This suite also contains five other benchmarks
let 5, be the matched state. The sequence of static simulation statgs; e are not using. They are all variations on a 64-bit bit-wise adder,
_foI_Iowmg s; must be exactly the same sequence_that foIIvasThus, and our prototype does not yet support efficient 64-bit operations. The
it is not necessary to continue to simulate statically, since the com: .| hbenchmark MIPS-Lite. is a simple behavioral description of a
piler can produce the equivalent code sequence by inserting a bra'\WPS-compatiblé processorl.
operation fromis;_1 to s;, thus creating a loop consisting of events We compared the performance of our simulator with VCS 2.3
8y -0 Siml L from Chronologic Simulation, a state-of-the-art commercial simulator.

Once a loop has been found, it is necessary to remove elemepfgih \CS and VeriSUIF generate C code. In all cases, the generated
from the current? and D) so that static simulation may continue. code was compiled with the MIPS C compiler v3.19 with —O2. The
We remove the elements corresponding to events executed during #igulations were executed on a Silicon Graphics Indigo with 64MB
loop. This set of events also allows us to construct the exit conditiogf memory and a 100 MHz R4000 processor. Scheduling overhead
for the loop, since it is only when none of these events are ready to Rgas measured using tipexie tool. The results are shown in Table 1.
triggered that the loop may exit. The overhead we show for VCS indicates the amount of time spent

After finding a loop we continue simulation until we find anotherin the run-time library manipulating the event queue. VCS does some
loop or until simulation is complete (a type Il transition is taken). Inoptimizations to reduce run-time overhead by bypassing the event
general, loops consisting only of type | transitions will be generatequeue in some cases, such as simple signal propagation. In these cases
first (unclocked feedback) and enclosed by loops consisting type | ariduses function calls to activate events. The time spent performing

Il transitions (clocked feedback). these function calls is notincluded in our measurements. The overhead
for VeriSUIF shows the amount of time spent in the code that sets and
o tests triggers.
VI. Optimizations The absolute run time is shown as well as the time spent performing

scheduling tasks. When looking at the absolute times, it is important
r?& realize that VCS has a highly tuned code generator, and in some
Eases generates better code than VeriSUIF. This is apparent on the gcd
benchmarks where our poorer computational code is the sole reason
for the reduced performance. However, even with this disadvantage,

« Continuousassignment optimizations— Continuous assignments we still run almost two times faster on average. More interesting is the

represent assignments to wires where the left hand side contini[l'® SPent performing scheduling tasks. Here we can see that the time
ously reflects the current state of the variables on the right ha ent performing event queue managementin VCS can be substantial.

side. Rather than treating them as separate events we can inli g average, we spend only 4% as much time as VCS in scheduling
them directly into the code, thus drastically reducing the numb verhead.
of events we need to schedule. Such inlining must be done in It IS @lso interesting to measure the benefit of tracking variable
moderation, however, to limit the increase in code size. Thi¥aluesduring static simulation. A comparisonis presented in Table 2.
optimization is performed on the event graph before schedulingh® Percentage of scheduling states that do not require a run-time test
takes place. nearly double with variable tracking, from 40% to 76%, with several
requiring no tests for the entire simulation (the 40% of states that are
markedvusT even without variable tracking are due to unconditional
¢ Sensitization optimization — If an event immediately sensitizes control flow and delays). As a result of eliminating these run-time
itself after execution, and is sensitive at the beginning of simutests, variable tracking was able to reduce scheduling overhead on all
lation, it will always be sensitive. Thus it is not necessary to teshe benchmarks by an average of 1.9 times. In many cases this is
for sensitivity in the generated code. In many models, this is thbecause the benchmark used a series of constant test vectors and the
case for the majority of events. compiler was able to determine which events must trigger during each
test. Also, in the armsounter and MIPS-Lite benchmarks there is a
. toplevel clock and the compiler can eliminate run-time tests for events
o Levelization — During the course of event-driven simulation, ithat depend on the clock edges. However, there is a disadvantage
is possible to execute events multiple times as values propagafe sing variable tracking: the number of static states can increase

through the model. These multiple executions are not requireqqnicantly. This is because it takes longer to detect a cycle when
for the correct answer and adversely impact simulation perfolz,rianle values are taken into account.
y

mance. Through proper ordering of event execution unnecessar
events can be eliminated. This process is generally ched
elizationandis usedin levelized compiled code simulators [1, 2]. VIII. Conclusions

While the algorithm presented in the previous section generat
working code, we have found a number of optimizations that a
useful to produce a more efficient simulation.

One can add a form of levelization to an event-driven simulator |n this paper, we introduce the static simulation technique as a
by being intelligent about which events are retrieved from thgeneral method for compiling event-driven models into efficient sim-

event queue. We implement this in our compiler by assigning alation code. The method has two innovations. First, we use a general
level to each eventin the graph based on its maximum length paévent graph that succinctly captures the semantics of an event-driven
from the start event. Then, when tlmeOf function chooses simulation. Second, we use the general technique of partial evaluation
events fromR, it chooses the event with the lowest level numberto schedule the events as well as possible using statically available

Benchmark Absolute Runtime (sec) Scheduling Overhead (sec)

Name VCS | VeriSUIF | Speedup|| VCS | VeriSUIF | Speedup
2901/alg 124.35 67.62 1.84 || 43.65 4.67 9.35
2901/block | 235.83 263.44 0.90 || 65.80 25.47 2.58
armscounter | 42.60 10.77 3.96 || 36.68 3.37 10.88
diffeq 20.91 5.24 3.99 || 15.72 0.18 87.33
gcd 9.30 10.62 0.88 1.43 0.05 28.60
MIPS-Lite 16.35 10.06 1.63|| 4.66 2.46 1.89
Average 1.90 23.44

Table 1: Comparison of the run-time speed and scheduling overhead of VCS and VeriSUIF.

Without variable tracking With variable tracking

Benchmark | Schedule| % Scheduling || Schedule| % Scheduling | Overhead
Name Size MUST | Overhead Size MUST | Overhead | Speedup
2901/alg 2591 | 67% 11.28 4315 | 100% 4.67 2.42
2901/block 7332 | 24% 62.11 10321 | 74% 25.47 2.44
armscounter 1744 | 28% 5.37 2225 | 57% 3.37 1.59
diffeq 121 | 52% 0.42 237 | 100% 0.18 2.33
gcd 54 | 55% 0.08 97 | 100% 0.05 1.50
MIPS-Lite 103 | 11% 2.87 186 | 23% 2.46 1.17
Average 40% 76% 1.91

Table 2: Comparison of scheduling overhead with and without variable tracking. All times are in seconds.

information. This general technique can be applied uniformly to opgf5] D. M. Lewis, “A hierarchical compiled code event-driven

timize the simulation of arbitrary models including those containing

unclocked feedback and nonunit delay.

Our prototype implementation of the simulator uses the SUIF com-
piler system. We achieve an average speedup of about two whéd
compared to VCS 2.3 on six benchmarks. More importantly, our av-
erage scheduling overhead amounts to only 4% of that found in the

VCS code.

Acknowledgments

We would like to thank John Sanguinetti and Randy Allen of

Chronologic for their help with VCS, and Brian Murphy for help
with this document.

[1] Zz. Barzilai, J. L. Carter, B. K. Rosen, and J. D. Rutledge, “HSS -

(2]

(3]

References

a high-speed simulatorfEEE Transactions on Computer-Aided
Design, vol. 6, pp. 601-616, July 1987.

C. Hansen, “Hardware logic simulation by compilation,”26th
ACM/IEEE Design Automation Conference, pp. 712—715, 1988.

E. J. Shriver and K. A. Sakallah, “RAVEL: assigned-delay
compiled-code logic simulation,” iRroceedings of the 1992 | EEE
International Conference on Computer-Aided Design, pp. 364—
368, Nov. 1992.

[4] Z. Wang and P. M. Maurer, “LECSIM: A levelized event driven

compiled logic simulator,” ir27th ACM/IEEE Design Automation
Conference, pp. 491-496, 1990.

logic simulator,”| EEE Transactionson Computer-Aided Design,
vol. 10, pp. 726-737, June 1991.

E. G. Ulrich and D. Herbert, “Speed and accuracy in digi-
tal network simulation based on structural modeling,”18th
ACM/IEEE Design Automation Conference, 1982.

R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson,
S. Tjiang, S.-W. Liao, C.-W. Tseng, M. Hall, M. Lam, and J. Hen-
nessy, “SUIF: An infrastructure for research on parallelizing and
optimizing compilers,”ACM SIGPLAN Notices, vol. 29, pp. 31—
37, Dec. 1994.

[8] S. L. Coumeri and D. E. Thomas, “Benchmark descriptions for

comparing the performance of Verilog and VHDL simulators,” in
Proceedings of the 1994 International Verilog HDL Conference,
pp. 14-16, Mar. 1994.

