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We used the SUIF
research compiler to
parallelize the SPECfb
benchmark programs
and obtained the
highest recorded
SPECYD ratios by

running them on an -~

eight-processor -

machine.
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originated with mainframes, the use of
multiple processors in a single comput-
er is becoming popular in workstations and

I. . ike many architectural techniques that

. even personal computers. Multiprocessors

constitute a significant percentage of recent
workstation sales, and highly affordable mul-
tiprocessor personal computers are available
in local computer stores. Once again, we find
ourselves in a familiar situation: hardware is
ahead of software.

Because of the complexity of parallel pro-

gramming, multiprocessors today are rarely

used to speed up individual applications.

Instead, they usually function as cycle-

servers - that  achieve increased system

throughput by running multiple tasks simul-.

tanecusly.” Automatic parallelization by a
compiler is.a particularly attiactive approach
to software development for multiproces-
sors, as it enables ordinary sequential

" programs-to take advantage of the multi-

processor hardware without user involve-

. ‘ment. This article looks to the future by

examining some of the latest research results
in automatic parallelization technology.

Why multlprocessors7
The success of the RISC revolutron
demonstrates that designers must take state-

. of-the-art compiler technology into account

when creating neéxt-generation machines.

. The effectiveness of parallelizing compilers,
! ‘besrdes being important for existing systems, .-
has - significant 1mphcatrons for future '

machine desrg - Onee multlple processors

are transparent {o- the" programimer, multi-~

processors will be as easy to use as.tradi-
tional uniprocessors. We can then evaluate
the multiprocessor solely on price/perfor-
mance and treat additional processors. like
other performance enhancement features
suchas the cache organization or the instruc-
tion pipeline. '

v;}'reduc‘ d co plexrty of '
design’makes possxblea
and’a shorter time to ma;

- SUTF:(Sta ford Urnve

This iperspective is pa:nicu]arly&s_i‘gniﬁcaht
in the design of future:microarchitechires:In -
the quest for better microprocessor peifor--
mance, the current trend is to build wider
superscalar or VLIW (very,long instruction
word) machines. As designers add more func-
tional units t6'a procéssor, however, fewer
prograrns can use all the units effectively, and .
the marginal return of the additional hard-
ware decreases. ‘In fact, higher. processor
complexity ‘can increase a rnachrne s cycle
time, which ' may even slow dowity the pet-
formance of programs that do not take advan-
tage of the increased parallehsm

Only regular numeric progra

in toddy’s mrcropro
these same programs

multip; ocessor. The compﬂer can someumes .
even find multiprocessor-usable pagallelism
in programs:that exhibit little TLP, Mote:

- importantly; 4 mulmprocessors additional

< hardwate cost is.not wasted on 1‘herently :
sequential applications; whi ¢ hcans still run'in -

a multrprogrammed rnode o dehver better

_ overall System throughput :

The multrprocessor also’ offers severnl :
hardware iraplemenitation adVantages overa
single large and complex processor The mul-;

Experrmental data-we

Forrhat) Compﬂer1 suppo
tiprocessors can effectlv ‘
viddal apphcatrons SUIE :is "2 researchy
parallehzrng cornprler developed at Stanford i
University over the last seven years.: The:
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compiler is effective at parallelizing numeric applications that
operate on array data structures. We have recently developed
a pointer analysis.algorithm that extends parallelization to C
and not just Fortran programs. We have also extended tradi-
tional parallelism analysis to operate ‘on arrays and across
procedures to detect outer-loop parallelism, and have devel-
oped a set of locality optimization techniques to make mul-
tiprocessor caches more effective. Together; these techniques
greatly expand a compiler’s ability to -use a multiprocessor
effectively. ‘

In our experiments, we used SUIF to parallelize the
SPEC92 and SPEC95 floating-point applications for Digital
Equipment Corporation’s AlphaServer 8400 multiprocessor.
(The SPEC programs, which let us benchmark computer
systems, are not tailored to run on a multiprocessor.) The
8400 uses the 300-MHz Digital 21164 Alpha processor, a
leader in SPEC performance among microprocessors cur-
rently available. As it is hard to achieve speedups on
machines with fast processors, our choice of the 8400 pre-
sents a greater challenge to parallelization while also mak-
ing our conclusions more likely to apply to systems with
future processors.

SUIF successfully boosted the highest reported SPEC92fp
ratio of 506 to 1,016 by parallelizing the code for eight
processors. We raised the SPEC95fp ratio from 12.2 on one
processor to 38.4 on eight processors. Whereas SPEC results
alone are not a perfect indicator of the compiler’s effective-
ness, our parallelization techniques are general enough to
be applicable to a large class of programs. Altogether, these
results show that parallelization technology has greatly
matured in recent years, and that we can effectively paral-
lelize many numeric applications.

Our results suggest that the multiprocessor, with the help
of a parallelizing compiler, offers serious competition to very
wide superscalar or VLIW machines. Since we obtained pos-
itive results on multiprocessors that already exist, our results
provide stronger support for such a conclusion than do sim-
ulation results for hypothetical machines. In the near future,
it will become feasible to integrate multiple processors on a
single chip; a multiprocessor on a chip should provide even
better performance for parallelized code, as it should have
better support for finer granularity of parallelism.

SUIF parallelizing compiler

The SUIF parallelizing compiler is a fully functional com-
piler that converts sequential Fortran and C programs into
SPMD (single program, multiple data) source code for
shared-memory - multiprocessors. - For the experiments
described in this article, we generated a combination of C
and Fortran source code; we used C code to.coordinate par-
allel execution and Fortran code for most of the programs’
computational sections.

To provide a complete context in which to evaluate new
research techniques, the SUIF system includes the conven-
tional parallelization techniques that form the basis for most
commercial parallelizers today. It performs data dependence
analysis—which determines whether iterations -of a loop
operate on different array elements—to decide if a loop is
parallelizable. It uses techniques that recognize reduction

operations (for example, summations and products), con-
vert a scalar variable into private copies on each processor,
and transform loop nests (such as interchanging inner and
outer loops) for the sake of parallelism and locality. We refer
to these analyses and optimizations as “first-generation” par-
allelization techniques. In 1994, we released a system con-
sisting of these basic parallelization techniques. It is publicly
available via the World Wide Web at http://suif stanford.edu.

Besides these conventional techniques, the SUIF system
includes three unique experimental components, which we
will also make publicly available once they are stable. First,
to extend the scope of parallelization to include C programs,
we have developed an interprocedural algorithm that dis-
ambiguates pointer variables. Second, since the multi-
processor’s unique abilities include executing loops
containing complex control flow in parallel, we have extend-
ed previous techniques to identify outer-loop parallelism.
Finally, as memory behavior can significantly affect perfor-
mance on a shared-memory architecture, SUIF contains a
suite of locality optimization techniques to make multi-
processor caches more effective. The case study boxes pre-
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The main computation in the turb3d program is a series
of loops that compute three-dimensional fast Fourier trans-
torms (FIFTs). While these loops are parallelizable, they all
have a complex control structure containing large amounts
of code. as shown in Figure A, The boxes represent pro-
cedures, and te Jines represent procedure invocations.

over 300 lines of code spanning cight or nine procedures.
with up to 12 procedure calls.

Case study: turb3d

Each parallel loop. as the diagrany indicates. consists of
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To get any significant speedup. we must paralielize these
outer loops, The kev o discovering the parallelisn is inter-
procedural array analyvsis. The compiler determines that
iterations of the outer loops operate on independent planes
of the drravs across the procedure calls, This analysis s dif-
ficult because the program contains array reshapes such |
that the three-dimensional arrayvs are treated as long vee: |
tors in some of the procedures. Onee parallelized. wrb3d |

vields aspeedup of over 3.5 on a tour-processor machine.

Figure A, Parallelized loops, turb3d, showing complexity only.

sent two examples of our work with the SPECOSfp bench
mark suite

Pointer analysis for C. For automatic parallelization to
become generally usctul, we must be able o handle popu-
Lo programming hinguages, With the exception of Fortran.
most programming languages i use have pointer variables
that allow progriammers 1o dirccetly store and retrieve data
addresses. Designed for low-level programming. the € lan-
vuage allows programmers even the freedom to pertorm
arithmetic operations on the pointers. The presence of point-
ers makes paradlclization ditficale as the compiler must prove
that two memory operations are certain o aceess different
locations betore it can reorder them inaparallel execution.
The analvsis 1o determine i pointer variables might refer to
the same location is known as pointer alias analysis,

Pointer alias analyvsis is one of the hardest problems in
compilation. Obtaining precise results requires the compil-
cr o applhy the eehnique interprocedurally s across the entire
program. Since the behavior of o procedure may depend on
the aliases that hold i the contexsowhere itis invoked. pre-

cise results also demuand ccontext=sensitive aalysisowhich
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considers cach calling context separately s Many contextsen
sitive analy ses summarize the effect of cach function tor eth
cieney, but pointer anualysis is not amenable o such an
optimization

Building upon results generited by many rescarchers in the
arca. we have developed o new pointer analyvsis algorithm
that finds context=sensitive pomter alias results efficienthy
Our approach is o identify the calling-contestadiases relevant
1o the procedure’s behavior and then analvze the proceduare
once tor all calling contests that have the same relevant alhias
e This Teads o very Tast anadysis times and tuliv conte
sensitive: results, The analvsis can difterentiate: benween
pointers 1o global and stack variables: but can only differen
tite pointers 1o heap data structores allocaed a difterent pro
criim points or in different catling contexis, For example. the
algorithim can determine thar two Bists are disjomt it the hist
clements happen o be created by nwvo different statements in
the progran, but it cannot determine that the data structares
are dinked Distss We carrently have the technology to paral
felize simple arrav-based computaions writien in Cwith abou

the samee effectuveness as il the programs had heen written i



Fortran. We expect to see further progress in pointer alias
analysis and its applications in the near future.

Finding coarse-grained, loop-level parallelism.
Efficient, hand-parallelized codes tend to be dominated by
large, outer, parallel loops. Thus, for the compiler to achieve
the same effect as hand parallelization, it must successfully
parallelize large segments of code that may span many pro-
cedures.

Advanced array analyses. Parallelizing an outer loop is
not just a matter of adding a “parallel” directive to a loop,
because it is often necessary to change the data structures the
computation uses. For example, it is very common for each
iteration of a loop to assign and then use the same variable.
To make the loop parallelizable, the compiler must give each
processor a private copy of the variable. As another exam-
ple, a loop might contain a reduction (for example, compu-
tation of a sum, product, or maximum over a set of data
elements) that a compiler can parallelize by having each
processor compute a partial reduction locally and update the
global result at the end. To find parallel inner loops, we can
simply privatize scalar variables and transform reductions
that write to scalar variables. To find outermost paraltel loops,
however, we must extend these analyses to array variables34

Array privatization analysis is much more difficult than the
data dependence analysis found in first-generation paral-
lelizers. For the latter, the compiler need only prove that dif-
ferent loop iterations are operating on different array
elements. For the former, iterations may operate on the same
locations, but the values one iteration generates must not be
used by another.

The SUIF parallelizer also performs array reduction recog-
nition. This technique locates reductions based on commu-
tative operations—Ilike summation, product, minimum, and
maximum—that are updates of the same memory location.
This approach is powerful enough to recognize commutative
updates of indirectly accessed array locations, enabling the
compiler to parallelize even reductions that operate on sparse
arrays.

Interprocedural parallelization analysis. To find paral-
lelism in outer loops, the compiler must perform analysis
across procedure boundaries. A simple way to eliminate pro-
cedure boundaries is to perform in-line substitution—replac-
ing each procedure call by a copy of the called
procedure—and perform program analysis in the usual way.
However, this approach does not work for recursive pro-
grams and is not a practical solution for large programs, as
program size can increase to an unmanageable extent.
Interprocedural analysis, which applies data-flow analysis
techniques across procedure boundaries, can be much more
efficient by analyzing only a single copy of each procedure.

We have developed an interprocedural parallelizer that
incorporates a comprehensive suite of analyses for paral-
lelization.> Our compiler includes a set of interprocedural
analyses on scalar variables, including dependence and pri-
vatization analysis and reduction recognition. It also includes
several interprocedural analyses that assist the array analy-
sis, including constant propagation, induction variable elim-
ination, recognition of loop-invariant computations, and
symbolic relation propagation. Finally, the compiler per-

- forms array data dependence analysis and all the advanced

array analyses mentioned earlier in an interprocedural man-
ner. This powerful set of optimizations can parallelize loops
spanning hundreds of lines of codes and numerous non-
trivial functions.

The interprocedural analysis algorithm we use is both pre-
cise and efficient. Our analysis is flow sensitive, which means
that it precisely captures the effects of the control flow with-
in each procedure. We use a region-based approach, where
the regions of interest are loops and procedures. The algo-
rithm separates analysis of procedure side effects from the
propagation of calling contexts to the procedure, so that two
passes over the program call graph suffice to complete a
flow-sensitive analysis. In addition, we use selective proce-
dure cloning to make the results context sensitive and there-
fore more precise. This technique replicates the analysis
information for a procedure whenever two paths to the pro-
cedure contribute very different data-flow information.

Cache optimizations. As processors get faster, the
memory hierarchy plays an increasingly important role in
determining performance. Microprocessors rely on caches
to shorten the effective memory access time, but caches
often perform poorly on numeric applications. Since
numeric applications have large data sets, a microproces-
sor often displaces data before it can reuse them. In cache-
coherent multiprocessors, data sharing between processors
introduces even more cache traffic, exacerbating the prob-
lem. Cache misses occur not only when processors share
the same data words, but also when they use different
words on the same cache line. Moreover, as each proces-
sor operates on only a subset of the data, it is more likely
that the data it touches will have little spatial locality, fur-
ther reducing cache benefits.

Cache performance has been a focus of the SUIF compil-
er from the very beginning of the project. We have devel-
oped techniques to partition computation across processors
to minimize interprocessor communication.® Through uni-
modular loop transformations and blocking, the compiler
reorders the computation each processor executes to
enhance data locality.” We have also developed an inter-
procedural algorithm that changes the array data layout to
minimize unnecessary cache traffic.® The algorithm reorga-
nizes arrays to allocate data accessed by one processor in
contiguous locations. For example, the compiler might
change the organization of an array from column major to
row major, or restructure a 2D atray as a 3D array. We devel-
oped all the loop and data transformation algorithms with-
in a unified theoretical framework based on linear algebra.
Experimental results show that this technique can signifi-

_cantly improve program performance.

Parallelizing SPEC92fp programs

The SPEC92fp benchmark suite consists of 14 floating-
point applications, briefly described in Table 1, next page.
The standard measure of machine performance is the SPEC
ratio, which compares the machine performance to that of
a reference machine. The total SPEC ratio is the geometric
mean of the ratios obtained for individual programs.

The amount of parallelism the compiler can recognize
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Table 1. Characteristics of SPEC92fp programs.
"No. of .

Program -, Language ~lines. - Description

alvinn.. S C :272 -~ Neural network training

doduc Fortran 5,334 Monie Carlo sirmulation of

. : a nuclear.reactor

ear. C 5,237 -Human ear simulation

foppp Fortran - - 2,718 - .Quantum chemistry code
- hydro2d Fortran - . 4,448 * - Astrophysics simulation . i

‘ using Navier-Stokes Program - Compiler-options-
: STt equations : TR
mdljdp2 Fortran 3,883 - -‘Molecular dynamics modef - spice2g6 -WF-m4 -astatic’ -dp: -
: i - (double precision) doduc -Zv 2Wd-eZAWF-m4dp:
mdljsp2 - Fortran .. 4,456 . Molecular dynamics model fpppp AY -Wd’-JZ* MSOO’ -'*\/Vf"
' . (single precision) ora
nasa’ Fortran 1,177 - »Seven floating-point -. .- mdljdp2
el ~intensive kernels wave5

ora Fortran ‘533 Ray tracing . mdlisp2 .

spice2g6 Fortran/C :18,912 - Analog circuit simulator - alvinn —03

su2cor . Fortran 2;514 - Quantum physics code nasa’z v —Wf—m4 «dp .
swm256 - Fortran 487 Shallow-water simulation ear -03 *h restrict=f,ivdep -
tomcaty Fortran 195 - Vectorized mesh hydro2d -ZV SWATp:-MT100 - 7841

“ . - . generation code su2cor -2V =Wf-md ~dp--
waves Fortran ... 15,062. Maxwell's equations and tomcaty -Zv-WF-mid<dp ¢ i
- particle equations of SWm256. -ZvWNd-e W -mdsadplaas
motion -
800 1 5 performance
4o the SPEC92fp programs onaCray

[o)3
-
o

4

» i . Research C90- processor in: terms of © -
Mflops (million floatir g-point oper-
ations. per second). The' Compilef -
" options box lists the flags: we sed

N

[

S
¥

torcompile the programs; -
The C90 obtamed a. SPEC92fp
ratiovof - 5405 We i alculated the

- Performance (Mflops)
e !
o
[}

‘ Mﬂops rates shown i F1gure a usmgz
4 setiof | reference floating:point -

0 ¥ T t t
© © o @ 7o) c ~ b
5 5 & 5 % ¢ 9 E g 8§
¥ e T By L= @
(s} o] = S =z ko] © <
g £ €
Programs

operation: counts weobtdined: by
running the opti’miied ‘program-on
) s1rnple RISC microprocessor. A ref-
erence floating-point count prov1des
a .common: basis for companson

- . -between machines; since hamdware B

hydro2d

su2cor
toméatv
swm256

Figure 1. SPEC92fp performance on:a Cray C90 vector processor. .

depends heavily on the program’s stricture and: how it.is
written. To. get some insight-into the program: structurefand
provide a means of calibrating the performance results; we
measure how well these: .programs are vectorized.
Successfully vectorized programs.tend to be dense matrix
computations and contain simple €asily parallelizable loops.
Conversely, programs. that-are not:vectorized present a
greater challenge to the parallelizer.
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“-features such as. fnasked : vector
operations and: predicated or spee-
- ulative executions- ‘mﬂate the -
: -number of ﬂoaung o) nt operations
executed. For the graph we have sorted the png s n
ascending order of Mflops rates ach1eved
Our results indicate that the atrained Mﬂop
a few Mflops for spice2gb to 646 Mflops for
half the benchmarks are suécessfully vectori;
performance in excess of 200 Mflops; the:poo ectorized ©
programs execute atless than 75 Mflops: The ectorizdble :
programs because of their inherent parallelism afe 11kely to

s v_a'ry_ erI’n’ o
1256: Roughly
diachieving .




run well on a multiprocessor. Thus, 100

to highlight the relationship between

®© 0 N - ©
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)
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a = [ = = © < A Q £

= ° ] © c ° = S
£ £ 2 % s 3

Program

C
1]
program structure and parallelizabil- g 80
ity, we maintain this order for the e
SPEC92fp programs when present- % 60
ing the experimental results. 2 40
Analyzing the SUIF paralleliz- 8
er. We used the SUIF compiler to g 20
parallelize the SPEC92fp programs, S
generating SPMD code in a combi- . 0
nation of C and Fortran. We fed this :z\%‘ §
code to the native compiler on the s 38
Digital 8400, using the “best” flags @ &
as reported by Digital whenever R
meaningful. If SUIF failed to find sig- g 10,000
nificant parallelism in a program, we € 1,000
passed the original sequential pro- % 100 i
gram to the native compiler T
unchanged. 8 10 1
To analyze the success of paral- S 1
lelization, we present three sets of = 0.1 4
experimental results in Figure 2. % 0.01 L]
Figure 2a shows the parallel cover- g .
S 0.001 -

age, defined as the percentage of
the original (sequential) computa-
tion found to be executable in par-
allel. Figure 2b shows the

spice2g6
doduc

(b)

N

10 = ©
R 3 8 & 8
g 2z @ S o & ol
= B = 2 = -
T . .T ® ggE
£ £ £ 93

Program

granularity of parallelism, defined
as the average sequential execution
time of the loops identified as par-
allel. Finally, Figure 2c shows the
relative speedups of the applica-
tions on a four-processor Digital
8400 machine. These graphs high-
light the importance ' of the
advanced analysis techniques by
showing the results we obtained
with the full SUIF compiler as well
as those we obtained using the first-
generation ~ parallelization tech- (¢)
niques alone. -

w

N

ey

o

Speedup on 4 processors (relative)

Program

Parallel coverage. High parallel
coverage indicates that the compiler -
analysis located significant amounts

[l First-generation parallelizer
Cache and memory optimization

B Interprocedural parallelization
] 'nterprocedural pointer analysis

of parallelism in the computation—a

' prerequisite to efficient parallel per-
formance. By Amdahl's law, even a
program with as much as 80 percent
coverage cannot achieve more than a
speedup of 2.5 on four processors

. and 3.3 on eight processors. Figure 2a shows that the first-gen-

eration parallelizer finds almost no parallelism beyond vec-

torizable loops in the Fortran programs.

With all its advanced techniques, SUIF is fairly successful
in locating parallelism in SPEC92fp. The C pointer analysis
algorithm allows SUIF to locate loop level parallelism in the
two C programs (alvinn and ear). SUIF also finds significant
parallelism in about half of the nonvectorizable programs as
a result of the advanced array analyses and interprocedural

Figure 2. SPEC92fp parallelization with SUIF: parallel coverage (a), granularity of
parallelism (b), and speedup on four processors (c).

analysis. Ten of the 14 SPEC92fp programs have a coverage
of at least 80 percent.

SUIF fails, however, to find much parallelism in three of
the SPEC92fp programs. Examination reveals that each of
these programs is written in a.convoluted programming style
that obscures the original program semantics. In fact, two of
these programs contain no significant loop level parallelism
without a major rewrite of the algorithm. In conclusion, SUIF
is effective in finding the statically analyzable parallelism in
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Table 2. SPEC92fp execution times (in seconds). (under 30 percent' i
‘ “SUIF parallelized
Cray o (no. of processors)
Program- °C90 © v Reported* . SRS 4 8 }

T T ularity of parallelism; tanging fromea
‘spice"ZgG ¢-498.6 1025 7102.5 102.5 102.5 few iictoseconds t¢iovera decond.
,idoduc 15.0 4.9 49 49 4.9 Constdermg that SPEC92fp prOgrams 4
“fpppp: ©.75.8 1408 o 14.1 14.1 14.1 have: relatrvely small ata’sets: and
V~ora ’ : 32.8 2007 1197 4.9 25 ° short’ running-times; it 1s'fnét surprls— )

mdljdp2 214 16.0 15.6 8.6 6.9 ing that some:of the grﬁnuiarftres are”

wave5 14.2 11.8 11.8 11.8 1.8 - very-small. : el
mdiljsp2 21.7 14.1 14.2 8.0 6.4 Relgtive'speedup. »igure 20’ ‘show’s
alvinn 4.8 8.0 8.6 35 2.9 that the first- generatlon pa1allehza—
nasa7 10.5 26.5 40.0 17.5 7.4 tion techniques: edn: only speed; up
ear 12.9 20.0 20.0 20.0 20.0 . - five -of the 14 SPECYH? rczgrams'; :
hydra2d 6.2 23.8 27.0 10.4 88 . and all of therivare vectonzable Pros
su2cor 43 17.6 227 14.1 15.9 grams. With the advariced research
tomcaty 1.0 3.7 5.0 13 0.7 components, SUIF speeds up: four:
SWr256 8.2 29.0 31.2 8.4 4.6 morerprograms; biinging the total
ok number. of - programs: that benefit
. L - from parallelization:to. nine;-As we
* One processor canrsee from the figures; a-program’s

speedup factor is highly-correlated .
toitsiparallel coverdge: arid'its 'ora'ni

—
n
[
o

-
o
Q
o

ularity: of paralfelisme: 5o ‘
-Due 1o-its fine: granularrty of par~,
~allelism, ear istheionly: progran that

‘| =—=—=— Cray-C90
Digital 21164 (reported)
Digital 8400 (SUIF) .

[es)
Q
(]

does not speed up: desp1te its: h1gh :
parallel’coverage:: Athoughifsu2eor

and ‘hydro2d also suffer from fi“n‘e.—"k
grained-parallelism; they:do'speed

up with increased data setisize; as

No. of processors

: Performance (Mflops)
: e S
o O
o e

N
(@3
=

" demonstrated by the’ SPEC95fp pro- :
grams: (see followi >
execution times of: ~nasa7 ‘and: toms

[ACTERN I G N R A e )

—_

catv. improve die to Jocality opti-

- mdljdp2 +
waves +
mdljsp2 -+
alvinn .-
nasa7 +
ear T

- Program

mizations: Fmally, m\d{ sp2, mdljdp2, -
and iord. demonstrate the suceess of
SUIF in- exploiting /coarse- gramed -
parallelism: - & .
SPECY92fp-on Dlglta] 8400 The
Digital 21164 s a quadissue. ‘super-

su2cor -+

tomcatv
SWM256

Figure 3. SPECQpr performance.

the SPEC92fp suite.

Granularity of parallelism. A program with hrgh parallel
coverage does not necessarily achieve a high speedup.
Synchronization’ and communication:overhead may:out-
weigh the performance gain of executing the loop-in'paral-
lel- While it is difficult to measure the precise parallelization
ovethead, we can estimate.ifs-potential cost by measuring
the granularity of parallelism. Figure 2b shows a log-scale
graph of the granularity of parallelism:that SUIF and the first-
generation parallelizer -obtaified. Granularity ‘tesults for
mdljdp2 and mdljsp2-for the first-generation. cornpiler are
irrelevant as-its coverage for those ‘programs is very low
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‘scalar: rmcroprocessor with two 64=.
bit - integer . and * two o 64bit
floating-point pipelines: At a clock:
rate:of 300 MHz} sits peak: sperfors
~mance-is 1,200 MIPS or 600:Mflops. The processothag én:
chip an 8-Kbyte instruction cache, an g Kbyte: datascache, and
a 96-Kbyte combined second-level cache: The' memory Sys-
tem allews multiple Outstandmg off- chrp THEMOLY aCtEsses:
The Digital 8400 is:a :bus-based, shared-memory :multi- ‘
processor containing up:to twelve 21164 processors: Besrdes‘
the two-level caches ofi chipjedch processot hasid Mbytes ‘of.
10:1is external cache: The 256:bit data bus; Whr i @pcrates at:
75 MHz, supports 265 -Ns memory read la

memory conﬁgured dstwo banks w1th 12 Mby achi
Table 2 shows the performance dataof ﬂ'le SPEC92fp Pror



grams for the Cray C90, the Table 3. SPEC95fp execution times (in seconds).

SPEC92fp results reported by Digital

for a single 21164 processor, and the SUIF parallelized

performance results obtained by the Lines _(no. of processors)

SUIF compiler for one, four, and Program (no.) Description Reported* 1 4 8

eight processors on the 8400. Due

to parallelization overheads and the fpppp 2,784 Quantum chemistry 445.0 4450  445.0 4450

ineffectiveness of the native compil- code '

er in dealing with SUIF-generated apsi 7,361 Pseudospectral air 151.0 151.0 151.0 151.0

code, some of the SUIF-generated pollution rnodel

uniprocessor programs run slower waveb 7,764 Maxwell's equations 193.0 193.0 193.0 193.0

than the vendor-reported times. The and particle equations.

SPEC92fp ratio measured on a sin- of motion

gle processor running the parallel su2cor 2,332 Quantum physics 185.0 2274 86.2 78.9

code is only 465-—closer to Digital’s ) code

reported base ratio of 437 than its applu 3,868 Parabolic/elliptic 333.0 3804 1243 86.8

best ratio, 506. Despite the loss in partial differential

uniprocessor performance, the equation solver

SUIF-parallelized code on the 8400 mgrid 666 Multigrid solver for 258.0 293.1 73.4 48.5

achieves an impressive SPEC92fp computing 3D

rating of 845 for four processors, and potential field

1,016 for eight processors. tomcatv 190 Vectorized mesh 241.0 295.2 65.9 442
Figure 3 shows Mflops rates (with generation code

the same reference floating-point turb3d 2,100 Isotropic, homogeneous ~ 373.0 383.3 103.8 60.9

operation count mentioned earlier) turbulence simulation

calculated for a Cray C90 processor, hydro2d 4,292 Astrophysics simulation 300.0 294.1 76.9 48.0

a single 21164 processor using the using Navier-Stokes

reported data, and the 8400 running equations

with different numbers of proces- swim 429 Shallow-water 371.0 4203 80.9 37.9

sors. The three programs with the simulation

highest parallel coverage and coars-

est granularity of parallelism (ora,

tomcatv, and swm256) speed up lin- * One processor

early as the number of processors

increases. For the rest of the pro- »

grams, the improvement due to parallelization decreases as
the number of processor increases. We expected the phe-
nomenon of decreasing marginal return, since the SPEC92fp
programs have small data set sizes; all the programs but
spice2g6 run in under 30 seconds on a single 21164 proces-
SOf.

The experimental results suggest that building. multi-
processors out of fast mictoprocessors is an effective tech-
nique for achieving high performance. A single 21164
processor executes the SPEC92fp programs with perfor-
mance in excess of 60 Mflops consistently, and above 100
Mflops in many cases. It outperforms the C90 on half the
benchmark suite and delivers very competitive SPEC92fp
performance. The overall performance of the multiproces-
sor is impressive, with six programs attaining over 200
Mflops on eight processors. A small number of 21164s can
beat the C90 on the most vectorizable programs, with the
eight-processor system attaining 613 Mflops for tomcatv
and 1.15 Gflops for swm256. The multiprocessor further
extends the microprocessor’s lead over the vector machine
for some of the nonvectorizable codes (for example, ora
and mdljsp2).

The multiprocessor’s weakness is in supporting parallel
codes that operate on small vectors, as the su2cor and ear

applications illustrate. Today’s multiprocessors do not sup-
port fine-grained parallelism well; the three levels of private
per-processor cache in the 8400 system make data sharing
between processors very expensive. Better support, such as
a shared second-level cache, can improve future perfor-
mance as multichip module implementation techniques
mature or as the level of integration increases.”

Finally, there are always programs that are not amenable
to parallelization (for example, spice2g6 and doduc).
However, because of complex control flow and data struc-
tures, these programs are not amenable to other performance
enhancements such as vectorization or instruction level par-
allelism either. While multiprocessors cannot speed up such
individual applications, the processors can execute different
programs ot instances of the same program at the same time.
For example; the usefulness of running multiple Spice sim-
ulations at the same time is clear. This option makes the mul-
tiprocessor a more versatile architecture than a very wide
superscalar machine.

SPEC95fp

Table 3 déscribes the SPEC95fp programs and lists the per-
formance results we obtained running SUIF-paralielized
codes on one, four, and eight processors. We have sorted
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Figure 4. Performance of SPEC95fp.

the programs in ascending order of their speedups, shown
in Figure 4.

. SUIF .speeds up seven of the 10 SPEC95fp programs.
Programs fpppp, apsi, and waves suffer from poor parallel
coverage. The su2cor program has 90 percent coverage, but
its average granularity of parallelism is less than 200 ms. For
applu, SUIF achieves the speedup shown by parallelizing an
outer loop using array privatization and blocking (see the
earlier:Case study box): The rest of the programs achieved
almost a perfect speedup on four processors. In fact, swim
speeds up supeilinearly primarily because of the improve-
ment in cache performance as each processor accesses less
data. The programs continue to show improvement as the
number of processors increases to eight.

Our results show that the multiprocessor organization is
even.more successful in improving the performance of
SPEC95fp. applications than-of SPEC92fp. Moreover, the
results for the SPEC95fp suite aré more significant, as they are
more representative of realistic workloads. Parallelization
lowers the SPEC95fp ratio for one processor slightly from
12:2 t0'11:2. However, it improves the performance by a fac-
tor of 2.3 on four processors,-vielding a SPEC9Sfp ratio of
28.4..On eight processors, there is a gain of 3.2 times, yield-
ing a-SPEC95fp ratio of 38.4.

ARE MULTIPROCESSORS VIABLE, from a software per-
spective, as the next generation of microarchitecture? Automatic
parallelization techniques are indeed mature enough to paral-
lelize both Fortran and C programs that contain high degrees
of instruction level parallelism: Compilers can now find paral-
lel loops beyond the inner Joops and across function calls; and.
can thus take advantage of the multiprocessor’s unique abili-
ty to execute different threads at the same time. These outer
parallel loops yield coarser granularity, which genérallyleads
to higher performance. Small data set sizes can create parallel
loops that are too fine-grained to run éfficiently on'today’s mul-
tiprocessors; but future integration of multiple processots on
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compléxity as doiother architectural
techniques forhigh performante: The
multiprocessor- is alteddy aproven
architecture among mainframesand wotkstations; it becores
ever more affordable now that multiprocéssor: PCs;are. availi -
able on the market. As automatic parallelization technolégy -
matures and the hardware technology imptoves the multi
processor is a logical candidate for the! next~generat1on '
microarchitecture. [0l : :
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