
A Simple Placement and Routing Algorithm for a Two-Dimensional
Computational Origami Architecture

Robert S. French

April 5, 1989

Abstract

Computationalorigami is a parallel-processing concept in
which a regular array of processors can be folded along
any dimension so that it can be simulated by a smaller
number of processors. The problem of assigning functions
to each of the processors is very much like the general-
ized electrical circuit layout problem. This paper presents
a simple, polynomial time algorithm for placing and rout-
ing functions in an origami architecture. Empirical results
are analyzed and optimizations suggested.

1 Introduction

Computational origami is a parallel-processing concept
developed by Alan Huang [7, 8, 9]. An origami machine
consists of a regular array of processors superimposed on
a tessellable mosaic architecture [11]. The array can be
arbitrarily ‘‘folded’’ along any of its dimensions so that
it can be simulated by a smaller number of processors.
The latency and throughput of the system can be adjusted
by folding the array widthwise or depthwise, respectively.
The folding of an origami array is transparent to the soft-
ware running on it. Information about the construction of
an origami machine can be found in [3].

A sample origami array is shown in figure 1. This is a
two-dimensional array of processors with each processor
having two inputs and two outputs. The outputs of a pro-
cessor are staggered with the inputs of the processors on
the next row so that signals can be distributed as necessary.
Each processor contains no state and performs one simple
operation per cycle. Each can take on one of a number of
flavors, or operations that can be performed. All proces-
sors have the same selection of flavors. Thus, an origami
array is programmed simply by selecting a flavor for each
of the processors. The processors in an origami array are

called nodes. Note that data always flows ‘‘down’’ an
origami array, and never up or directly sideways.

While there are many different interconnection strate-
gies that can be used, and the origami concept can be eas-
ily extended to more than two dimensions, we will only
treat this simplified model here. Information about other
architectures can be found in [11].

Figure 1: A sample two-dimensional origami array.

It is easy to see that any logical function can be com-
puted with an appropriate array of nodes. For example,
the array illustrated in figure 2 takes six inputs, performs a
logical AND on them, and produces a single output. The
array illustrated in figure 3 implements a 4-bit by 4-bit
adder using half-adders (HA), OR gates, and routing ele-
ments (an HA element produces the sum on its left output
and the carry on its right output).

The primary problem with an origami system is assign-
ing functions to each of the nodes so that a task can be per-

1

I0 I1 I2 I3 I4 I5

AND AND AND

AND

AND

OUT

Figure 2: A simple 6-input AND tree.

formed efficiently with a minimum amount of hardware.
Standard compiler techniques can be utilized to generate
dataflow graphs from computer languages, but creating an
origami array from the logic functions produced is a diffi-
cult problem. In many ways this is analogous to the gen-
eralized two-dimensional electrical circuit layout problem
(e.g. the automatic routing of wires on a printed circuit
board), but it is sufficiently different that circuit layout al-
gorithms are not directly applicable. Finding an optimal
placement and routing is considered to be NP-complete,
although this has not been proven formally.

Chuang [2] developed a prototype routing system for
a three-dimensional origami array using a flooding algo-
rithm with backtracking. This was used to place and route
a Wallace tree adder. This paper proposes an efficient al-
gorithm for placing logic functions and routing between
them without the need for backtracking. Because the re-
sult can be optimized in an iterative fashion, the algorithm
can be run for a predefined time and then the best result
achieved so far can be returned.

2 Preliminaries

For the purposes of this algorithm, an origami array is
a two-dimensional staggered array of nodes as described
above. In a fully automated logical compiler it might
be desirable to treat each node independently for place-
ment. However, in a large application the number of nodes
may be very large (equal to the number of discrete log-
ical functions that need to be performed) and compila-
tion time quickly increases beyond the realm of practical-

HA

A0 B0 A1 B1 A2 B2 A3 B3

HA

HA

OR HA

HA

OR

HA

HA

S0 S1 S2 S3

Figure 3: A 4-bit by 4-bit adder made from half-adders
and OR gates.

ity. Therefore it is frequently desirable to break down the
problem into subproblems, and place and route the nodes
required for each subproblem separately or perhaps even
by hand. Once the placement and routing for a subprob-
lem has been produced, we can consider the result to be an
atomic unit for future connection to other nodes and sub-
problems. Such a subproblem is called a module, and is
considered in this algorithm to be an by rectangular set
of nodes with defined input and output locations. Typical
modules are -bit adders, multipliers, and bus multiplex-
ors. Individual ungrouped nodes are also considered to be
modules.

This algorithm assumes that there are four flavors ded-
icated to routing. They are:

1. passthrough: copy the left input to the left output,
and the right input to the right output.

2. crossover: copy the left input to the right output, and
the right input to the left output.

3. left broadcast: copy the left input to both the left and
right outputs, and discard the right input.

4. right broadcast: copy the right input to both the left
and right outputs, and discard the left input.

Procedures for breaking a problem into subproblems will not be dis-
cussed in this paper.

2

Their symbols are listed in figure 4. A series of connected
routing flavors is called a wire.

Passthrough

Crossover

Left broadcast

Right broadcast

Figure 4: Flavors used for routing.

The algorithm requires the following data as input:

, the set of all of the modules which need to be
placed.

, the set of dependencies between the modules.
Each corresponds to and is the set of mod-
ules which provide inputs to .

, the set of routings between the modules. Each
indicates an output pin of a module (src) and

the input pin of another module (dest) it should be
connected to.

Inputs and outputs to the array are treated as special
modules which are used during placement and routing, but
are not actually placed in the physical array.

3 Module Placement

The first step in the algorithm is to place the modules in
an array so that routing between them is as short as rea-
sonably possible. Modules are first ordered vertically into
distinct levels (this is a logical placement—the physical
placement won’ t be determined until later), and then are
placed horizontally within each level.

The ordering of modules vertically is a simple process:

1. Mark all of the modules as unused.

2. Add all of the inputs to level 0, and mark them as
used; set the level number to 1.

3. Add to the current level all modules (which are not
outputs) which depend only on modules which have
already been added to previous levels. That is, all
modules such that isn’ t marked as used, and
for each module , is marked as used and
the level of is less than the current level.

4. Increment the level number by 1.

5. If all modules which are not outputs are marked as
used, add the outputs to the current level and stop.

6. Go to step 3.

Note that step 3 must eventually use all of the modules be-
cause there can be no circular dependencies between mod-
ules (the modules form a strict hierarchy).

Once the modules have been ordered vertically, they
must be arranged horizontally. This is done in two stages:
ideal placement, and shifting to allow room for routing.
During the ideal placement stage, the modules are placed
in such a way that the total idealized routing distance to
each module is minimized. For a given module , the
idealized routing distance is the sum of the squares of the
horizontal displacements for each module that feeds data
to an inputof . The horizontal positionof these modules
will always be known since module placement proceeds
in order down the hierarchy. For each level, modules are
picked one by one and placed in such a manner that their
idealized routing distance is minimized and they do not
overlap. This can be done very efficiently using a variant
of the median method discussed in [5].

Once the modules are ordered vertically and placed hor-
izontally in an ideal manner, some may need to be shifted
to make room for wires which need to go between mod-
ules. This is done by tracing the ideal path of each wire
while keeping counters (which we will call right and

left) indicating how much space adjacent modules need
between them and creating a goal for each wire on a per
level basis. The algorithm is:

1. For all , let right left .

2. For each , follow the routing from its source
to its destination in a straight diagonal line. When-
ever would intersect a module, , increment either

right or left depending on whether the wire is
intersecting the right half or left half of the module,
respectively. Keep track of which modules needs
to pass between, and whether it needs to pass on the
right or the left.

3

3. Shift the modules (keeping their same relative hor-
izontal position) such that the distance between ad-
jacent modules and is at least right

left.

4. For each , find the new position of each pair
of modules it is going to pass between, and assign it
a goal column for that level such that no two wires
have the same goal column for that level (there must
be enough space because of steps 2 and 3). The goal
column for the wire’s starting level is the horizontal
position of the appropriate output of the source mod-
ule, and the goal column for the destination level is
the horizontal position of the appropriate input of the
destination module.

Once this step is completed, all modules have been
placed in such a manner that routing, using the appropriate
goal columns, must be possible without backtracking.

4 Routing

Now that the modules have been placed horizontally and
ordered vertically, and each wire that needs to be routed
has a goal column for every level it must pass through,
routing can proceed. Routing proceeds from the outputs,
up through the levels, to the inputs (thus routing proceeds
in the opposite direction from the flow of data). The rout-
ing algorithm maintains the following state: the current
level and the set of wires, , which are currently being
routed. It proceeds as follows:

1. Set equal to all whose destination module
is an output, and set each wire’s current position to
the horizontal position of the output. Set the current
level to the level on which all outputs reside minus 1.

2. Determine the goal column for each for the
current level.

3. Route each wire toward its goal column by the
method outlined below, and continue until all wires
have reached their goal columns.

4. Place all modules which reside on the current level at
their desired horizontal position, and delete all

whose source module has now been placed.

5. Continue routing as in step 3. Whenever the top of
a freshly placed module is reached, add the wires

whose destinations are that module to . Continue
until the tops of all modules on this level have been
reached.

6. Decrement the current level number.

7. Repeat until level 0 (the level containing only array
inputs) is reached.

8. Continue routing wires until all wires have reached
their goal columns (the positions of the appropriate
inputs).

As wires are being routed, a number of conflicts can
arise. These include two wires interacting (such as need-
ing to cross) or a wire needing to move left or right and
not being able to (because of interconnection constraints).
Such conflicts are resolved according to the appropriate
entry in table 1. For example, if the wire entering on the
left side of the node needs to go right and the wire entering
on the right side of the node needs to go left, a crossover
should be placed at the current location. Likewise if only
one wire is entering the node, is entering on the right, and
needs to go left, a crossover should be placed.

The only conflict not covered by this table is the case
where two wires are entering a node and have the same
goal column for the current level. In this case, the wires
should be combined by using a left or right broadcast and
removing one of the wires from the current wire list .

5 Performance Analysis

All portions of the presented algorithm run in polynomial
time in the number of modules. The estimates given below
are easily achieved with standard programming practices,
and better upper bounds can probably be achieved with a
little effort. Specifically, assuming there are modules:

Ordering the modules vertically is an opera-
tion.

Ideal horizontal placement of modules is .

There are wires, and thus the process
of shifting the modules horizontally is .

There are wires, and the array is nodes
high, so routing is in general (although it is
actually slightly worse).

4

Wire on right
needs to go

Wire on left needs to go
left straight right none

left passthrough crossover passthrough crossover
straight passthrough passthrough crossover passthrough

right passthrough passthrough passthrough passthrough
none passthrough passthrough crossover

Table 1: Flavors used to resolve various routing conflicts.

The algorithm was implemented and included in a sim-
ple compiler [4]. Table 2 shows the running times on a
DEC VS2000 workstation for this algorithm for the gen-
eration of ripple-carry adders with 8–20 bits of input (4–10
bits for each operand) and selectors for 2–20 bits (gener-
ating 1–10 selected bits with a single select line). As can
be seen, for specific applications the algorithm can run in
almost linear time.

Function # of modules Time (sec)
Adder (8 bit) 5 2.1
Adder (12 bit) 7 4.4
Adder (16 bit) 9 6.4
Adder (20 bit) 11 8.5
Selector (2 bit) 4 .9
Selector (6 bit) 12 1.7
Selector (10 bit) 20 3.3
Selector (20 bit) 40 10.1

Table 2: Placement and routing times for several sample
applications.

6 Optimizations

Unfortunately, we pay for the speed of the algorithm with
inefficiencies in the resulting origami array. In the appli-
cations that have been generated by this algorithm so far
(including a few simple 8-bit 3-function calculators and
a 16-point convolution machine), routing accounts for ap-
proximately 45% of all assigned nodes, while another 45%
of the nodes are left unused entirely. When we consider
that in an ideal situation each node would have a physical
piece of hardware associated with it, and that the latency
of the system is proportional to the height of the array, we
can see that this is a tremendous amount of wasted time
and hardware. Most of the specific pathological cases that

have been encountered are too complex to be discussed in
this paper, but there appear to be a number of general ways
to improve this algorithm.

One routing problem arises when two buses need two
cross. For single wires this is obviously not a problem, but
for large buses of wires to cross huge areas may have to
be dedicated to routing. This amount is greatly increased
when the wires in the bus are densely packed (they have
no space on either side). Adding the constraint that, when
not required to be densely packed to interface to a mod-
ule, wires should have at least one free space between
them should significantly decrease the amount of routing
required.

Many other optimizations can be applied in an iterative
manner. A popular way to do this is called simulated an-
nealing [10, 1, 6, 12]. In this method, one of a number
of optimizations is chosen and applied to the current sys-
tem. A cost function is used which indicates the desirabil-
ity of a given system, and the change in cost () from the
original system to the new system is computed. The new
system is accepted with probability:

where T is the ‘‘ temperature’’ of the system which grad-
ually decreases as more optimizations are applied, thus
accomplishing an ‘‘ annealing’’ effect. Two of the opti-
mizations which could be iteratively applied using this or
similar methods are:

The modules have been placed to minimize the ide-
alized routing distance; however, it is possible that
they have not been placed to minimize the real rout-
ing distance. Localized transposition of modules
should decrease routing requirements in many cases.

An experimental implementation of this optimization achieved an
over 40% reduction in array size.

5

This can be done using a method similar to the
–neighborhoods presented in [5].

Much of the routing in an origami array is devoted
to permuting a set of wires to match the input re-
quirements of a module. For example, if an adder
has an output with the most significant bit on the left,
and this result needs to be sent to a negation module
which expects the most significant bit on the right, a
great deal of time will be spent rearranging the wires
to satisfy this constraint. While it is possible to par-
tially solve this problem by developing libraries of
‘‘ matching’’ modules, it is impossible to do this for
all combinations in practice. A simple solution to this
problem is to provide more than one module capable
of performing a particular task. The modules would
be identical in function, but would have their input
and output pins permuted in different ways so that
the routing distance could be reduced by selection of
the appropriate modules. Since it is impossible to de-
termine which instance of a module will produce the
largest reduction in array size, modules must be cho-
sen at random during the annealing process.

None of these optimizations have been fully imple-
mented at the time of this writing.

7 Conclusion

An algorithm to place and route logic modules in an
origami array has been developed. The algorithm runs
in polynomial time in the number of modules, and can
achieve almost linear performance in some cases. How-
ever, the resultant origami array is very inefficient and con-
sists primarily of routing and unassigned nodes. Several
iterative optimization techniques were presented includ-
ing techniques based on simulated annealing, but none
have been implemented at the time of this writing.

References

[1] ČERNÝ, V. A thermodynamical approach to the trav-
eling salesman problem: An efficient simulation al-
gorithm. Journal of Optimization Theory and Appli-
cations 45, 1 (Jan. 1985), 41–51.

[2] CHUANG, I. L. Computational origami. Aug. 1988.

[3] CHUANG, I. L. An introduction to the application of
computational origami. Feb. 1989.

[4] CHUANG, I. L., AND FRENCH, R. S. Karma I: An
origami architecture computer. Dec. 1988.

[5] GOTO, S. An efficient algorithm for the two-
dimensional placement problem in electrical circuit
layout. IEEE Trans. Circuits Syst. CAS-28 (Jan.
1981), 12–18.

[6] GROVER, L. K. A new simulated annealing algo-
rithm for standard cell placement. In Proceedings
IEEE International Conference on Computer-Aided
Design (1986), pp. 378–380.

[7] HUANG, A. Architectural considerations involved in
the design of an optical digital computer. Proceed-
ings of the IEEE 72, 7 (July 1984), 780–786.

[8] HUANG, A. Computational origami. Patent applica-
tion, July 1987.

[9] HUANG, A. Computational origami - the folding of
circuits and systems. In Proceedings of the 1989 Op-
tical Computing Conference (Feb. 1989). To appear.

[10] KIRKPATRICK, S., GELATT, JR., C. D., AND VECCHI,
M. P. Optimization by simulated annealing. Science
220, 4598 (May 1983), 671–680.

[11] LU, H. Computational origami: A geometric ap-
proach to regular multiprocessing. Master’s the-
sis, MIT Department of Electrical Engineering and
Computer Science, May 1988.

[12] WONG, D. F., LEONG, H. W., AND LIU, C. L. Simu-
lated Annealing for VLSI design. Kluwer Academic
Publishers, 1988.

6

