The Zephyr Notification Service

C. Anthony DellaFera

Digital Equipment Corporation
Project Athena
M assachusetts Institute of Technology
Cambridge, MA 02139
tony@ATHENA.MIT.EDU

Mark W. Eichin
Robert S French
David C. Jedlinsky
John T. Kohl
William E. Sommerfeld

Project Athena
M assachusetts Institute of Technology
Cambridge, MA 02139
{ eichin,rfrench,opus,jtkohl,wesommer} @ATHENA.MIT.EDU

ABSTRACT

Zephyr is a notice transport and delivery system under development at Project
Athenal Zephyr is for use by network-based services and applications with a need for
immediate, reliable and rapid communication with their clients. Zephyr meets the high-
throughput, high fan-out communications requirements of large-scale workstation
environments. It is designed as a suite of ‘‘layered services’ based on areliable, authen-
ticated notice protocol. Multiple, redundant Zephyr servers provide basic routing, queue-
ing, and dispatching services to clients that communicate via the Zephyr Client Library.
More advanced communication services are built upon this base.

Introduction

This paper is a brief introduction to the
concept of a notification service in general and to
the design of the Zephyr Notification Service in
particular. A notification service provides
network-based services and their clients with
immediate, reliable, and rapid communication for
small quantities of time-sensitive information.
The sections which follow address the following
issues:

e Motivation for developing a notification ser-
vice.

e Role of a notification service in networked
workstation environments.

e Design congtraints.

e Services provided for users by a notification
service.

e Unsolved problems and topics for future
development.

While this paper is about Zephyr, Project
Athena' s Notification Service, it is our belief that
the concepts presented here can be generalized to
fit a broad range of notification services and sys-
tems. A good understanding of a notification ser-
vice can be acquired by comparing the Zephyr
Notification Service and a more traditional
method of workstation message delivery, elec-
tronic mail (specifically, sendmail). Table 1
makes this comparison.

Table 1.

A Comparison Between Zephyr And Mail

Metric

Zephyr

Electronic Mail

Addressing

Implicit/Dynamic: All addressing is
determined dynamically; an explicit
‘‘address’ is not required. One-to-
one addressing is supported by expli-
citly specifying of recipient ZID.
The notice subscription layered ser-
vice alows for self-selection by the
recipient.

Explicit/Static: Sender must know
and explicitly provide the name and
address (except for ‘‘local’ mail) of
each recipient. Static mailing list
support is provided. Only recipients
explicitly named receive messages.

Delivery Method

Notices are delivered via dynami-
caly routed reliable datagrams. No
connections need be established or
maintained. Multiple levels of
notice acknowledgment are sup-
ported.

Mail is delivered using a point-to-
point TCP/IP connection. Ack-
nowledgments are not supported, per
se. Return receipts may be requested
but are not guaranteed to work.

Delivery Action

Asynchronous/Active: Notices arrive
without user intervention. Noticesto
a paticular user are dedivered
automatically and immediately to all
of hisor her current login sessions.

Synchronous/Passive: Mail must be
sent and read manually by the user.
Mail, in general, is delivered to one
particular place (a ‘‘post office’” or
““mail drop’’) for each user; she
must then actively retrieveit.

Message Length

Short, fixed, notice length with a
maximum of approximately 10 lines
of 80 characters each.

Long, typicaly unfixed, message
length. Mail messages may be and
often are extremely large, on the
order of many pages. When mes
sage length is fixed it is usually done
so by unpredictable rules that vary
from siteto site.

Message Persistence

Notices are considered time-
sensitive; no queuing is provided. If
the client recipient is not logged in,
then the notice is flushed.

Long time-to-live. Messages typi-
caly remain in a mail drop until
read.

Message Fan-out

High fan-out: Sending to large listsis
efficient. Each client generates one
copy of a notice regardiess of the
number of recipients. Each server
receives one copy of a notice being
routed regardliess of the number of
recipients.

Low fan-out. Sending to large lists
can consume a great deal of the com-
puting resource. If a message is sent
to n users, n copies are generated by
the sender, each of which is retained
indefinitely by itsrecipient.

Traffic Performance

High volume/High throughput:
Notices may be transmitted in large
numbers due to the low overhead of
dynamically-routed reliable
datagrams.

Medium volume/Low throughput:
Large mail messages can send area-
sonable volume of data, but slowly
(as connections need to be esta
blished and routes determined).

A Comparison Between Zephyr And Mail

Metric

Zephyr

Electronic Mail

System Configurability

Dynamically reconfigurable:
Dynamic resource allocation and
configuration within the base notifi-
cation services allows for automatic
and simple user-level reconfigura-
tion of layered services.

Statically reconfigurable: Reconfi-
guration of Unix mail systems is
wizard-level work and has signifi-
cant global impact. No utilities are
provided for dynamic system modifi-
cation or reconfiguration. All
changes must be made centrally and
atomically.

System Maintenance

Low maintenance: Layered services
dynamically recover unused
resources through time-outs and
reference counting.

High maintenance: Mail requires a
post office staff to maintain post
office boxes (mail drops), mailing
lists, the routing system, and to
manually reroute ‘‘dead letters.””

A Solution To Communication Needs

When services designed for use in a time-
sharing environment are used for avery large sys-
tem of networked workstations, certain communi-
cation services begin to fail.T They predom-
inantly fail from to their inability to cope with
large increases in network scale (i.e., an increase
in both the number of workstations and the
number of interconnected local area networks).
After examining how certain of these services
communicate with their clients, we have identi-
fied two primary failure modes. These are the
inability of a service to cope with increasing
server-to-client fanout and the inability of clients
to deal by the replacement of alocal service with
a remote, distributed service. The Zephyr project
was begun to provide a solution to these two
fallure modes in the context of time-sensitive
communications. Zephyr has grown into a more
powerful tool than was originaly anticipated;
what began as the development of a ‘‘desirable’’
service soon turned into the development of a
““required’’ service.

The following services are candidate clients
of a notification service. All need either the base
level Zephyr service, which will deliver a mes-
sage to an identifiable but unlocalized recipient,
or the notice subscription layered service, which
will deliver a message to the set of potential reci-
pients interested in, i.e. subscribing to, messages
of that class. These service levels are discussed
more fully in the next section.

File Service

A file server can send notices to the users
and hosts that it knows would be affected
by achange in file server status, e.g. a shut-
down. If those users also register a sub-
scription with the notice subscription lay-
ered service, other providers of informa
tion, such as operations staff, would also be
able to reach the user.

Post Office Service
Remote post offices can notify users about
the arrival of new mail.

Electronic Meeting Service

TActually, servicesin general begin to fail, but the scope
of this discussion is primarily the realm of communica-
tion services. While some of the services, such as On-
Line Consulting, may be unfamiliar to the reader, they
are part of the Athena environment. See the companion
paper on Athena Changes to Berkeley Unix, this volume,
for an overview of that environment.2

Electronic meeting services (conferencing
systems) can notify interested users of new
transactions, using the notice subscription
layered service.

Print Service
Print servers (and queuing services in gen-
eral) can send job status information back
to the job’s submitter.

MOTD Service
Message-of-the-day information (system
wide, service-specific, or local) can be sent
to users, such as when they begin using a
particular service in the case of a service-
specific MOTD.

On-Line Consulting
The notification service can be used as the
underpinning of a dynamic on-line consult-
ing service. The notice subscription lay-
ered service can be used to provide topic
based information routing, user location,
and consultant-to-client rendezvous.

Host Status Service

Broadcast-based host status systems (e.g.,
ruptime) do not scale to a large workstation
environment; disk usage grows linearly
with network size and total packet compu-
tation time grows geometrically. The notif-
ication service can provide immediate host
status and error log natification on selected
hosts or servers.

User Location Service

Broadcast-based user location systems
(e.g., rwho) also do not scale to a large
workstation environment for the same rea-
sons noted above under Host Status Ser-
vice. The notification service can provide
asynchronous and immediate user location
and state change (login/logout) notification
on selected users or groups of users. This
can facilitate communication among users.
For example, within the limits of user per-
mission and access control (described in the
section A User’s Overview), students can
watch for their friends or development
team members for their co-workers.

Talk or Phone Service
In a network of workstations, one must
know the exact address of othersin order to
talk to them. A notification-based talk
facility can be constructed that locates the
party being called, transmits a talk request
notice to that party and, if permission is
granted, automatically establishes a talk

connection.

Emergency Notification

In the Athena environment, there is a
requirement to provide a simple, asynchro-
nous, and secure means of sending urgent
notices to all users on aworkstation or in a
particular group of workstations. Broadcast
methods are not useful on alarge scale and
are by definition imprecise. In addition, the
workstation user must trust the broadcast-
ing host and the person issuing the mes-
sage. Using Zephyr, emergency notices
can be sent directly to all users on any
specified host, with authenticityt
guaranteed.

Message Service

Current write services suffer the same
problems noted above under Talk or Phone
Services. A notification-based write utility
is trivial, since aimost all the work is sub-
sumed by the notification service. Write
notices can go to individual users or to pre-
viously created subscription groups.

Other Service Events

The notification service can be used to reli-
ably notify users of a wide range of asyn-
chronous service events that occur in distri-
buted workstation environments. This
notification can be accomplished by using
the base notification service, the emergency
notification service, or one of the notifica
tion service layered services.

Fitting The Tool To The Job

Zephyr is designed around a system of
dynamically-updated, locally-authoritative
servers that provide centralized routing, queuing,
and dispatching. Clients communicate with these
servers via the Zephyr Client Library interface.
The Zephyr Client Library implements the Zephyr
Protocol, areliable, authenticated notice transmis-
sion protocol. In our design we view the notifica
tion service as a suite of ‘‘layered services’ built
upon a base notice transport layer. Additional
layers provide more advanced communications
services. This design is analogous to that of the
X Window System.4

Zephyr notices consist of two parts: a

tSince Zephyr relies on authentication, it is also suggest-
ed that you read the Kerberos paper in this volume.3 This
provides a general introduction the Project Athena Ker-
beros Authentication System.

routing header and client data. 1t isthe job of the
Zephyr Servers to route notices between Zephyr
clients based upon attributes specified in the
notice’ s routing header. Servers do not examine a
notice's client data; it is entirely possible that that
data is encrypted or otherwise uninterpretable.
By examining the attributes in a notice’s routing
header, a Zephyr Server computes the list of reci-
pients of a notice. The most basic routing attri-
bute that may be specified is a single recipient,
named by a ZID.t More complex routing attri-
butes are specified for the layered services. The
notice classification information for the notice
subscription layered service discussed above or
specialized keywords for use with a rule-based
routing service are examples of such complex
attributes.

Determining notice recipients based upon
routing header attributes is known as "subscrip-
tion multicasting". Subscription multicasting is a
passive routing technique; attributes not recog-
nized by a service layer are ssimply ignored. This
alows layered services to implement different
notice routing methods that peacefully co-exist
while using the same base notification service. In
this way subscription multicasting differs from
other message routing techniques such as network
broadcast or sendmail. Because the set of reci-
pients for any notice can always be determined, it
is more efficient and less vulnerable to increases
in network scale than broadcast techniques.
Because additional resources, routing methods,
and recipients may be dynamically added by
amost any user, it requires less maintenance and
incurs less overhead than traditional list based
message transmission techniques (such as send-
mail).

Zephyr clients determine what level of ser-
vice they receive from the notification service by
choosing the service layer with which they com-
municate. For example, certain system services
have complete knowledge of their clients, and
only need the notification service to route infor-
mation to those clients. This is the most basic
service layer. For example, a file server knows
the particular users it is serving, and needs only
the ability to reliably notify those users about ser-
vice state changes. On the other hand, client ser-
vices that cannot identify their clients (or may

TRecipients must be uniquely identifiable. Zephyr relies
on Kerberos to both provide and guarantee these identif-
iers. So as to avoid confusion with the sense of a UID,
we shall refer to the Zephyr identifier asaZID.

simply not know who is interested in such state
information) may wish to notify ‘‘interested par-
ties’ about service state changes. A workstation
error logger would fall into this category. This
type of service would make use of the notice sub-
scription service layer. Such a service layer pro-
vides the ability to store communication state
information for client services externa to those
services. This adds to the notification service the
unique ability to provide to its clients status and
availability information about other services even
when those services are disabled and cannot com-
municate with their own clients.

Design Requirements And Constraints

The goal of the Zephyr development is to
produce a 4.3BSD Unix implementation of a
notification service useful to Athena. Thisimple-
mentation should consider the effects of:

Scale - Such a service must efficiently pro-
vide its capabilities with the highest possible fan-
out (i.e, client to server ratio), without adversely
affecting network load or server host perfor-
mance. Additional redundant servers must be
easy to install, and must provide load sharing
immediately.

Evolution - Since Zephyr is an evolving
service, it is must gracefully handle protocol com-
patibility from one version of the service to the
next.

Management - It must be possible to per-
form al aspects of service maintenance and
operation remotely.

Network Protocols - Since the notification
service depends upon an underlying network tran-
sport mechanism, it accepts those design con-
straints imposed by that mechanism. The Zephyr
Protocol, as currently implemented, is based on
the Unreliable Datagram Protocol (UDP). As
such, it is constrained to operate within the capa-
bilities of UDP. However, there is nothing in the
design of the protocol that would prevent its using
other network transport mechanisms (such as a
remote procedure call system). Constraints
imposed by UDP are listed below, along with a
brief description of how they affect Zephyr appli-
cation programmers and end users.

Duplicate Notices
UDP does not provide any suppression of
duplicate packets, Zephyr clients may
receive duplicate Zephyr notices. Zephyr
applications must be capable of dealing
with this possibility.

Missequenced Notices
UDP does not provide packet sequencing.
While Zephyr notices do contain times-
tamps, it is up to the application to check
the timestamp and handle notices received
out of sequence.

Flow Control
UDP does not provide any flow-control
capability. Zephyr applications must be
capable of dealing with notices at whatever
rate they arrive or be willing to lose
notices.

Unreliable Delivery
UDP does not provide a reliable delivery
mechanism. Zephyr does provide severa
levels of acknowledgment processing, but it
is up to the application to decide how much
overhead it is willing to incur in order to
guarantee notice delivery.

Packet Sze
UDP packets have a relatively small, max-
imum size. Considering the amount of
routing data and other information that
Zephyr must store in each packet, this
becomes a constraint on how much user
data may be included with each packet.

How visible these constraints are to the end user
is up to the Zephyr application programmer. For
example, our zwrite application (which allows
users to exchange write-like messages) only
guarantees that the message was sent, not that it
will actually arrive or how many copies will
arrive.

In order to provide ZID-based communica-
tions, the notification service must dynamically
maintain a database that maps ZID's to their
current physical locations in the network. The
only requirement on the ZID used in addressing is
that it must be a network wide ZID and be
“‘registered’’ asaclient of the notification service
(i.e., have its physical address(es) stored in the
notification service database). In particular,
Zephyr manages a location database that maps
Kerberos ‘‘principal names'’ (authenticated user
names) into a tuple of physical location informa-
tion (geographic location, hostname, IP port
number, and tty, among other things). This data-
base is primarily used by Zephyr for notice rout-
ing, but is also made available to Zephyr clients
via the User Location Layered Service discussed
below.

The reliability of the information stored in
the user location database imposes constraints

upon applications that rely on Zephyr.

e User location information present in the
database can be assumed to indicate that a
user has logged in, because user logins that
are reported to Zephyr must be Kerberos
authenticated.

e User location information present in the
database cannot be assumed to indicate that
a user is ill logged in, because there is no
way to guarantee an orderly user logout.
(For example, aworkstation may crash).

e The absence of user location information in
the database cannot be assumed to indicate
that a user has not logged in, because a user
can choose to not make his or her login
information publicly available.

Zephyr attempts to prevent user location
data from persisting when it is no longer valid. If
a workstation crashes, the user login sessions on
that workstation are necessarily terminated
without sending logout notices to a Zephyr server.
This implies that logins in the database may not
always be valid. To cope with this, a specialized
Zephyr client runs during the workstation reboot
sequence. Thisclient ssimply tells a Zephyr server
to flush any previous state information associated
with the (rebooted) workstation.

A User’s Overview

For this discussion, a *‘user’’ of Zephyr is
either a user of a Zephyr client or an applications
programmer who is using the Zephyr Client
Library.

The Zephyr system can be viewed as
divided into two parts, clients and servers. There
must be at least one Zephyr Server (zephyrd) per
Kerberos ream (realm of authority of a particular
authentication service), one Zephyr HostM anager
Client (zhm) per active workstation and one
Zephyr WindowGram Client (awgc) per user
login session. To ensure reliable service, there
should be several Zephyr Servers per Kerberos
realm.

When a workstation is reboots, a zhm is
automatically started. The zhm serves two pur-
poses. Firgt, it acts as a reliable transmission
tower for notices sent from local Zephyr clients.
Second, the zhm acts as an emergency notice
routing channel on the individual workstation.
When zhm starts up it first seeks out a Zephyr
Server and registers itself with that server. From
then on, that zhm and all clients that communicate

through it are ‘*owned’’ by that server. Only that
server will be considered to have *‘ authoritative'”’
information about Zephyr clients on the worksta-
tion managed by that zhm.

All Zephyr clients on a workstation use the
Zephyr Client Library to send and receive Zephyr
notices. The Zephyr Client Library routes all
notice traffic leaving a workstation through that
workstation’s zhm. In this way, clients them-
selves are not required to have to locate and
manage communications with a Zephyr Server. |If
the zhm loses contact with its Zephyr Server (i.e.,
the Zephyr server which owns it does not respond
within a fixed but configurable safety margin) it
is the zhm's job to seek out and contact a new
Zephyr Server.

When a user logsinto a workstation, a zwvgc
for that user is automatically started, provided
that the user can provide an authenticator and that
the user has not deliberately disabled Zephyr. If
the user is not interested in using Zephyr, it is still
important that s’lhe have a zwgc running. The
most important reason is that zwgc is the contact
point for Zephyr emergency notices. These
notices are transmitted by certain privileged users
(eg. operations staff), directly to the
workstation's zhm. The zhm then forwards these
notices to all zwgc’'s currently running on the
workstation.

When the zwgc starts up, it registers the
user with Zephyr and, depending upon the setting
of certain Zephyr control variables, may make
other Zephyr requests. These variables may be
modified using the Zephyr Control Utility (zctl).
The most important of these variables is the
Zephyr exposure level variable. This variable
controls how much information about an indivi-
dual user Zephyr will store and make available to
requesting clients. There are currently six possi-
ble settings for this variable:

none - This completely disables Zephyr.
The user is not registered with Zephyr. No
user location information is retained by
Zephyr. No login or logout announcements
will be sent. No system default notice sub-
scriptions will be entered for the user.

opstaff - The user is registered with
Zephyr. Only system operation notices and
emergency notices will be received. No
user location information is retained by
Zephyr. No login or logout announcements
will be sent. System default notice sub-
scriptions will be entered for the user.

realm-visible - Thisis the default exposure
setting. The user is registered with Zephyr.
All notices will be received. User location
information is retained by Zephyr and made
available only to users within the Kerberos
realm. No login or logout announcements
will be sent. System default notice sub-
scriptions will be entered for the user.

realm-announced - The same as realm-
visible, plus loginfout announcements will
be sent to users within the Kerberos ream
who have explicitly requested them).

net-visible - The same as realm-visible,
plus user location information is made
available to any user who requestsit.

net-announced - The same as realm-
announced, plus login/out announcements
will be sent to any user who has requested
them.

2wgc is a vital client. For this reason awgc
has two primary interfaces. The first, and most
powerful, is an X Window System interface
referred to as a ‘' WindowGram browser.”” This
browser allows the user to scroll through and per-
form certain operations (such as ‘‘save’,
‘“delete’’, ‘‘cut’’ and ‘‘paste’’) on al the notices
that z2wgc has received. If a user logs into an X
display, xwgc selects this interface. If the user
does not have access to an X Display, xwgc
selects asimple termina based interface.

In addition to the basic services described
above, Zephyr provides additiona layered ser-
vices that are built on the base notification ser-
vice.t The two most important of these are the
Zephyr Notice Subscription Layered Service and
the Zephyr User Location Layered Service.

The Zephyr Notice Subscription Layered
Service provides a dynamic information dispersal
service based upon a ‘‘subscription list’” para
digm. The most important use for this layered
service is by services that cannot directly identify
their clients or may simply not know who is
interested in the information they are providing.
Such services may wish to simply send notices to
‘“‘al interested parties.”’

The simplest function that the Zephyr
Notice Subscription Layered Service providesisa
method for users and groups of users to exchange
notices. This is accomplished with the zwrite

1The architectural design details of the Zephyr Service
Layers are discussed in the Zephyr design document.>

utility. In addition to person-to-person messages
2write allows users to send notices to notice sub-
scription lists.

Restricted access to user location informa-
tion is made available to Zephyr clients by the
Zephyr Client Library. This information is
dispersed by the User Location Layered Service.
The database which this layered service uses is
maintained internally by Zephyr to track the
existence of ZID’s in the network. A user can be
located through Zephyr by using the Zocate
and/or znol utilities. These utilities make calls to
the Zephyr User Location Layered Service for the
user. The Zlocate utility allows users to manually
locate one or more users. The znol utility makes
use of the Zephyr Notice Subscription Layered
Service to subscribe to user login/out notices
from alist of ZID's provided by the user.

When aworkstation crashes, al clients run-
ning on that workstation are lost. When this hap-
pensr, client state information that Zephyr has
associated with that workstation must be flushed
and any corresponding Zephyr system resources
must be freed. This is done in two ways. The
first occurs slowly while the workstation remains
down, the second when it reboots. If the worksta-
tion remain down long enough dl invalid state
information will be incrementally detected and
flushed. This incremental flushing occurs when-
ever a Zephyr Server attempts to send (or route) a
notice to a client and discovers that the worksta-
tion on which that client is supposed to be run-
ning is not responding. When the workstation
does eventualy reboot, znmis called with a spe-
cia ‘‘reboot flush'’ flag. This causes zhm to run
just long enough to transmit a special workstation
state flush notice to the first available Zephyr
Server. These two ‘‘garbage collection’” tech-
niques work together to keep the Zephyr system’s
database current.

The last phase of user interaction with
Zephyr occurs at logout time. When the user logs
out, zwgc notifies Zephyr to flush all state associ-
ated with that user’s login and then exits.

The Zephyr system currently consists of the
following suite of programs:

zctl(1) Zephyr subscription control program
zinit(1) Zephyr login initialization program
Zeave(l) Remind you when you have to leave
Zocate(l) Findauser

znol(1) Notify on login/out of specified users
2wge(1) Zephyr WindowGram Client

2write(l) Write to another user

zZhm(8) Zephyr HostManager Client
zephyrd(8) Zephyr Server daemon
zstat(8) Display Zephyr statistics

Future Directions And Unsolved Problems

Once the basic notification service is in
place it becomes a simple matter to provide many
other layered services based upon it. The talk
service mentioned above is a good example of a
service that utilizes multiple Zephyr service
layers. We envision Zephyr as a transport service
that can incorporate new notice routing methods
as they are developed. Zephyr is designed to
allow communication development efforts to
occur side-by-side with running production sys-
tems that utilize Zephyr. For example, research-
ersat M.I.T.”s Sloan School of Management have
expressed interest in using Zephyr as the transport
service layer for arule based communication sys-
tem.

The following is a list of some of the areas
of future development. They are either unsolved
problems or areas that need further investigation.

e Extend the Zephyr Protocol for use across
long-haul networks.

e Modify the Zephyr Server to allow ZID
registration from other Kerberos authentica-
tion realms.

e Modify the Zephyr Server to forward Zephyr
notices to recipients in other Kerberos
realms.

e Develop a more forma interface definition
for use between the Zephyr notice transport
layer and Zephyr Layered Services.

e Develop a more advanced user interface for
the Zephyr WindowGram Client.

e Decouple Zephyr from the Kerberos system.
In the current implementation, they are
linked together too closely.

e Integrate with more clients.

Conclusions

Zephyr has proven useful in providing a
mechanism for transporting time-sensitive infor-
mation in a large-scale workstation environment.
It not only permits existing services from the
timesharing world to evolve toward the worksta-
tion world, but also permits new services to grow
alongside. It makes reasonable compromises
between reliability and complexity and is already
of useto both users and operations staff. Indeed a

major problem has been its popularity while still
under development.

Acknowledgements

The authors would like to acknowledge the
following people from M.I.T. Project Athena for
their help in making Zephyr areality. Michael R.
Gretzinger, former Systems Programmer, and
David G. Grubbs, former Manager of Systems
Integration, for their suggestions on the initia
concept of a Notification Service, and Daniel E.
Geer, the Manager of Systems Development, for
his undying support of our efforts. We also thank
Katharyn L. Lieben and G. Winfield Treese for
the improvements they made to this paper.

References

1 E. Balkovich, S. R. Lerman, and R. P. Par-
melee, ‘‘Computing in Higher Education:
The Athena Experience,”” Communications
of the ACM 28(11), pp. 1214-1224, ACM
(November, 1985).

2. G. W. Treese, ‘‘Berkeley Unix on 1000
Workstations: Athena Changes to
4.3BSD,"” pp. 175-182 in Usenix Confer-
ence Proceedings, Dallas, Texas (February,
1988).

3. J. G. Steiner, B. C. Neuman, and J. I.
Schiller, ‘‘Kerberos. An Authentication
Service for Open Network Systems’’ pp.
191-202 in Usenix Conference Proceed-
ings, Dallas, Texas (February, 1988).

4, R. W. Scheifler and J. Gettys, ‘‘The X
Window System,”” ACM Transactions On
Graphics 5(2), pp. 79-109 (April, 1987).

5. C. A. DélarFera, M. W. Eichin, R. S.
French, D. C. Jedlinsky, J. T. Kohl, and W.
E. Sommerfeld, Section E.4.1: Zephyr
Notification Service, M.I.T. Project Athena,
Cambridge, Massachusetts (December 21,
1987).

